def vali_test(config, model, data_iter, LOSS): t = time.time() model.eval() loss_total = 0 output_all = torch.FloatTensor([]).to(config.device) labels_all = torch.FloatTensor([]).to(config.device) with torch.no_grad(): for texts, labels in data_iter: outputs = model(texts) loss = LOSS(outputs, labels) loss_total += loss labels_all = torch.cat((labels_all, labels), 0) output_all = torch.cat((output_all, outputs), 0) loss = loss_total / len(data_iter) print(' ' * 22 + ' | loss: {:.4f}'.format(loss.item()), end='') output_result = evaluate(output_all, labels_all, config.classify_type) print(' | time: {:.4f}s'.format(get_time_dif(t))) return loss.item(), output_result

时间: 2024-04-17 19:27:22 浏览: 10
这段代码用于在验证集或测试集上进行评估。函数接受配置文件 `config`、模型对象 `model`、数据迭代器 `data_iter` 和损失函数 `LOSS` 作为输入。 首先,将模型设置为评估模式,通过调用 `model.eval()` 来实现。接下来,定义一些变量用于记录评估过程的信息。`loss_total` 用于累计损失值,`output_all` 用于存储模型的输出结果,`labels_all` 用于存储真实的标签。 然后,在没有梯度计算的情况下,遍历数据迭代器 `data_iter` 获取每个batch的输入数据 `texts` 和标签 `labels`。将输入数据传入模型,得到模型的输出结果 `outputs`。 计算损失值 `loss`,并累计到 `loss_total` 中。同时,将真实的标签拼接到 `labels_all` 中,将模型的输出结果拼接到 `output_all` 中。 在遍历完成后,计算平均损失值 `loss_total / len(data_iter)`。输出损失值和评估结果,并返回损失值和评估结果。 这段代码的作用是在验证集或测试集上进行评估,计算损失值和评估模型的性能。
相关问题

else: # 单标签分类 print('Epoch [{0:>3}/{1:>3}/{2:>5}]'.format(epoch + 1, config.num_epochs, total_batch), end=' ') print(' | loss: {:.4f}'.format(train_loss.item()), end='') result_train = evaluate(outputs, labels, config.classify_type) print(' | time: {:.4f}s'.format(get_time_dif(t))) # 验证集和训练集的准确率 vali_loss, result_vali = vali_test(config, model, vali_iter, LOSS) # 验证 test_loss, result_test = vali_test(config, model, test_iter, LOSS) # 测试

这段代码是在单标签分类情况下,在每个epoch的训练过程中输出训练集的损失值和评估结果,并计算验证集和测试集的损失值和评估结果。 首先,判断当前是单标签分类情况,进入else分支。然后,输出当前epoch的信息,包括当前epoch的索引、总的epoch数和进行到的batch数。通过`format()`函数将这些信息格式化打印出来。 接下来,输出训练集的损失值,通过`train_loss.item()`获取训练损失的数值,并使用`print()`函数将其打印出来。 然后,调用`evaluate()`函数对模型的输出结果和标签进行评估,得到评估结果`result_train`。通过`evaluate()`函数计算准确率等指标。 接下来,调用`vali_test()`函数对验证集和测试集进行评估。分别传入配置文件`config`、模型对象`model`、验证集迭代器`vali_iter`和测试集迭代器`test_iter`,以及损失函数`LOSS`。返回验证集和测试集的损失值和评估结果。 最后,将验证集和测试集的损失值和评估结果打印出来。 整个代码段的作用是在单标签分类情况下,输出训练集的损失值和评估结果,并计算验证集和测试集的损失值和评估结果。

def train(config, model, train_iter, vali_iter, test_iter, K_on, fine_tune): start_time = time.time() if fine_tune: # 只优化最后的分类层 optimizer = torch.optim.Adam(model.fc.parameters(), lr=config.learning_rate, weight_decay=config.weight_decay) else: optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate, weight_decay=config.weight_decay) best_pred = 0 # 记录验证集最优的结果 total_batch = 0 # 记录进行到多少batch last_improve = 0 # 记录上次验证集loss下降的batch数 flag = False # 记录是否很久没有效果提升 for epoch in range(config.num_epochs): for i, (trains, labels) in enumerate(train_iter): # 在不同的epoch中,batch的取法是不同的 t = time.time() model.train() # 训练 LOSS = margin_loss if ('multi' in config.classify_type) and ('level3' in config.classify_type) else nll_loss outputs = model(trains) optimizer.zero_grad() train_loss = LOSS(outputs, labels) train_loss.backward() optimizer.step()

这段代码是用来训练模型的函数。函数接受配置文件 `config`、模型对象 `model`、训练数据迭代器 `train_iter`、验证数据迭代器 `vali_iter`、测试数据迭代器 `test_iter`、`K_on`和`fine_tune`作为输入。 首先,根据是否进行fine-tune操作,选择不同的优化器。如果进行fine-tune操作,则只优化最后的分类层,使用`torch.optim.Adam(model.fc.parameters(), lr=config.learning_rate, weight_decay=config.weight_decay)`来初始化优化器。否则,优化所有参数,使用`torch.optim.Adam(model.parameters(), lr=config.learning_rate, weight_decay=config.weight_decay)`来初始化优化器。 接下来,定义了一些变量用于记录训练过程的信息。`best_pred`记录验证集最优的结果,`total_batch`记录进行到了多少个batch,`last_improve`记录上次验证集loss下降的batch数,`flag`记录是否很久没有效果提升。 然后,开始进行训练。首先,遍历训练数据迭代器 `train_iter`,获取每个batch的输入数据`trains`和标签`labels`。将模型设置为训练模式,通过调用`model.train()`来实现。 接下来,根据配置文件中的参数选择合适的损失函数。如果分类类型中包含'multi'并且包含'level3',则使用`margin_loss`作为损失函数,否则使用`nll_loss`作为损失函数。然后,将输入数据`trains`传入模型,得到模型的输出`outputs`。 接下来,将优化器的梯度清零,通过`optimizer.zero_grad()`来实现。计算训练损失`train_loss`,并进行反向传播和参数更新,通过`train_loss.backward()`和`optimizer.step()`来实现。 在每个epoch的训练过程中,会不断更新训练损失,并根据验证集的性能进行模型保存和早停操作。 整个代码段的目的是进行模型的训练过程,包括前向传播、反向传播和参数更新等操作。

相关推荐

这个代码里用所有的数据输入GCN模型,得到output,然后根据idx_train,idx_val,idx_test分别测试训练、验证和测试精度,但这些数据都已经被模型学习了,会不会存在不合理的情况?之前用unet验证时都是把三个数据集分开的,代码如下:def train(epoch): t = time.time() model.train() optimizer.zero_grad() output = model(features, adj) loss_train = torch.nn.functional.binary_cross_entropy(output[idx_train], labels[idx_train]) # 使用二分类交叉熵损失 acc_train = accuracy(output[idx_train], labels[idx_train]) loss_train.backward() optimizer.step() if not args.fastmode: # Evaluate validation set performance separately, # deactivates dropout during validation run. model.eval() output = model(features, adj) loss_val = torch.nn.functional.binary_cross_entropy(output[idx_val], labels[idx_val]) acc_val = accuracy(output[idx_val], labels[idx_val]) print('Epoch: {:04d}'.format(epoch+1), 'loss_train: {:.4f}'.format(loss_train.item()), 'acc_train: {:.4f}'.format(acc_train.item()), 'loss_val: {:.4f}'.format(loss_val.item()), 'acc_val: {:.4f}'.format(acc_val.item()), 'time: {:.4f}s'.format(time.time() - t)) def test(): model.eval() output = model(features, adj) loss_test = torch.nn.functional.binary_cross_entropy(output[idx_test], labels[idx_test]) acc_test = accuracy(output[idx_test], labels[idx_test]) print("Test set results:", "loss= {:.4f}".format(loss_test.item()), "accuracy= {:.4f}".format(acc_test.item())) # Train model t_total = time.time() for epoch in range(args.epochs): train(epoch) print("Optimization Finished!") print("Total time elapsed: {:.4f}s".format(time.time() - t_total)) # Testing test()

tokenizer = Tokenizer(num_words=max_words) tokenizer.fit_on_texts(data['text']) sequences = tokenizer.texts_to_sequences(data['text']) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences,maxlen=maxlen) labels = np.array(data[:,:1]) print('Shape of data tensor:',data.shape) print('Shape of label tensor',labels.shape) indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels = labels[indices] x_train = data[:traing_samples] y_train = data[:traing_samples] x_val = data[traing_samples:traing_samples+validation_samples] y_val = data[traing_samples:traing_samples+validation_samples] model = Sequential() model.add(Embedding(max_words,100,input_length=maxlen)) model.add(Flatten()) model.add(Dense(32,activation='relu')) model.add(Dense(10000,activation='sigmoid')) model.summary() model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(x_train,y_train, epochs=1, batch_size=128, validation_data=[x_val,y_val]) import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epoachs = range(1,len(acc) + 1) plt.plot(epoachs,acc,'bo',label='Training acc') plt.plot(epoachs,val_acc,'b',label = 'Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epoachs,loss,'bo',label='Training loss') plt.plot(epoachs,val_loss,'b',label = 'Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() max_len = 10000 x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_len) x_test = data[10000:,0:] x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_len) # 将标签转换为独热编码 y_train = np.eye(2)[y_train] y_test = data[10000:,:1] y_test = np.eye(2)[y_test]

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

主要介绍了解决keras,val_categorical_accuracy:,0.0000e+00问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Lan仿朋友圈系统开源,可用于表白墙等微商相册,商品图册等.rar

Lan仿朋友圈系统开源,可用于表白墙等微商相册,商品图册等.rarLan仿朋友圈系统开源,可用于表白墙等微商相册,商品图册等.rar
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:快速连接Redis服务器指南

![Redis验证与连接:快速连接Redis服务器指南](https://img-blog.csdnimg.cn/20200905155530592.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzMzNTg5NTEw,size_16,color_FFFFFF,t_70) # 1. Redis验证与连接概述 Redis是一个开源的、内存中的数据结构存储系统,它使用键值对来存储数据。为了确保数据的安全和完整性,Redis提供了多
recommend-type

gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app 报错 ModuleNotFoundError: No module named 'geventwebsocket' ]

这个报错是因为在你的环境中没有安装 `geventwebsocket` 模块,可以使用下面的命令来安装: ``` pip install gevent-websocket ``` 安装完成后再次运行 `gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app` 就不会出现这个报错了。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Redis配置文件解读:实例解析redis.windows.conf

![Redis配置文件解读:实例解析redis.windows.conf](https://img-blog.csdn.net/20180726010513323?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3lhbmc1NzI2Njg1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 1. Redis配置文件概述 Redis配置文件是Redis服务器运行的配置文件,它包含了Redis服务器的各种配置参数。通过修改Redis配置文件,我们可以对Redis服务器的运行行为进行
recommend-type

用js写一个冒泡排序)

好的,下面是 JavaScript 冒泡排序的代码: ```javascript function bubbleSort(arr) { var len = arr.length; for (var i = 0; i < len - 1; i++) { for (var j = 0; j < len - i - 1; j++) { if (arr[j] > arr[j + 1]) { var temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; }