for epoch in range(config.num_epochs): print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs)) for i, (trains, labels) in enumerate(train_iter): outputs = model(trains) model.zero_grad() loss = F.cross_entropy(outputs, labels) loss.backward() optimizer.step() if total_batch % 1 == 0: # 每多少轮输出在训练集和验证集上的效果 true = labels.data.cpu() predic = torch.max(outputs.data, 1)[1].cpu() train_acc = metrics.accuracy_score(true, predic) dev_acc, dev_loss = evaluate(config, model, dev_iter) if dev_loss < dev_best_loss: dev_best_loss = dev_loss torch.save(model.state_dict(), config.save_path) improve = '*' last_improve = total_batch else: improve = '' time_dif = get_time_dif(start_time) msg = 'Iter: {0:>6}, Train Loss: {1:>5.2}, Train Acc: {2:>6.2%}, Val Loss: {3:>5.2}, Val Acc: {4:>6.2%}, Time: {5} {6}' print(msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve)) text = msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve) with open(f"{config.model_name}_result.txt", mode="a+", encoding="utf8") as f: f.write(text + "\n") model.train() total_batch += 1 if (total_batch - last_improve > config.require_improvement) or total_batch == 188: # 验证集loss超过1000batch没下降,结束训练 print("No optimization for a long time, auto-stopping...") flag = True break if flag: break test(config, model, test_iter)
时间: 2024-02-15 16:28:24 浏览: 216
这是一个训练模型的代码片段,包括了模型的训练和验证过程。首先进入外层循环,遍历所有epoch,每个epoch都输出当前训练的进度。然后进入内层循环,遍历所有batch,对当前batch进行前向传播、反向传播和梯度更新。然后判断是否需要输出训练集和验证集上的效果,计算训练集上的准确率和验证集上的准确率和loss。如果当前的验证集loss比之前的最佳loss还要小,则保存当前的模型参数,并重置last_improve为当前total_batch的值。如果当前验证集loss没有下降,则不保存模型,并将last_improve的值保持不变。在循环过程中,total_batch的值会不断增加,flag标志位用于判断是否已经训练了很久但是效果没有提升,如果flag为True,则跳出循环,结束训练。最后调用了一个test函数,用于对测试集进行测试并输出结果。
相关问题
for epoch in range(params.num_epochs):
这段代码是一个 for 循环,用于训练模型。循环的次数是 params.num_epochs,也就是训练的轮数。在每一轮训练中,模型会对训练数据进行一次完整的迭代,也就是将所有的训练数据都用来更新模型参数一次。在每一次迭代中,模型会计算出损失函数的值,并利用反向传播算法更新模型的参数,使得损失函数的值最小化。整个训练过程就是通过不断地迭代,不断地调整模型的参数,使得模型的预测结果越来越接近真实值的过程。
if config.adaptive_lr: scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=config.decay_rate) # 调整学习率指数衰减,每次epoch:学习率 = gamma * 学习率 scheduler.step(train_loss) if total_batch % 10 == 0: # 每多少轮输出在训练集和验证集上的效果 if 'multi' in config.classify_type and 'level3' in config.classify_type: # 多标签分类 print('Epoch [{0:>3}/{1:>3}/{2:>5}]'.format(epoch + 1, config.num_epochs, total_batch), end=' ') print(' | loss: {:.4f}'.format(train_loss.item()), end='') result_train = evaluate(outputs, labels, config.classify_type) print(' | time: {:.4f}s'.format(get_time_dif(t))) # 验证集和训练集的准确率 vali_loss, result_vali = vali_test(config, model, vali_iter, LOSS) # 验证 test_loss, result_test = vali_test(config, model, test_iter, LOSS) # 测试
这段代码用于在训练过程中输出训练集和验证集的效果,并进行学习率调整。
首先,根据配置文件中的参数 `config.adaptive_lr` 判断是否需要进行学习率调整。如果需要调整学习率,则创建一个 `ExponentialLR` 学习率调度器,并设置衰减因子为 `config.decay_rate`。每个epoch结束后,通过调用 `scheduler.step(train_loss)` 实现学习率衰减,即学习率 = gamma * 学习率,其中 `gamma` 是衰减因子。
接下来,通过判断 `total_batch` 是否为10的倍数,来决定是否输出训练集和验证集的效果。如果是多标签分类,并且分类类型中包含'multi'和'level3',则输出训练集的损失值和评估结果。如果不满足上述条件,则不进行输出。
然后,调用 `vali_test` 函数对验证集和测试集进行评估,计算验证集和测试集的损失值和评估结果。
整个代码段的作用是在每个epoch的训练过程中,根据需要输出训练集和验证集的效果,并进行学习率调整。同时,还会计算验证集和测试集的损失值和评估结果。
阅读全文
相关推荐
















