num_epochs = 3 for epoch in range(num_epochs): for X, y in data_iter: l = loss(net(X) ,y) trainer.zero_grad() l.backward() trainer.step() l = loss(net(features), labels) print(f'epoch {epoch + 1}, loss {l:f}')
时间: 2024-04-09 21:31:38 浏览: 100
pytorch之inception_v3的实现案例
这是一个简单的训练循环,用于训练神经网络模型。在每个epoch中,通过data_iter迭代器遍历训练数据集,计算损失(l)并进行反向传播和参数更新。然后,计算并打印该epoch的损失值。
在这段代码中,num_epochs定义了训练的总轮数。通过循环迭代num_epochs次,我们可以对模型进行多次训练,以提高模型的性能。
注意,这段代码中使用了一个训练器(trainer),它负责更新模型的参数。具体来说,trainer.zero_grad()用于清空模型参数的梯度,l.backward()用于计算梯度,trainer.step()用于更新模型参数。
最后,使用net(features)计算所有训练样本的预测值,并计算它们与真实标签的损失值。然后打印出该epoch的损失值。
请注意,这只是一个示例代码,并不能完整运行。您需要根据实际情况定义损失函数、优化器和数据集迭代器,并对模型进行适当的初始化。
阅读全文