num_epochs = 3 for epoch in range(num_epochs): for X, y in data_iter: l = loss(net(X) ,y) trainer.zero_grad() l.backward() trainer.step() l = loss(net(features), labels) print(f'epoch {epoch + 1}, loss {l:f}')
时间: 2024-04-09 22:31:38 浏览: 98
这是一个简单的训练循环,用于训练神经网络模型。在每个epoch中,通过data_iter迭代器遍历训练数据集,计算损失(l)并进行反向传播和参数更新。然后,计算并打印该epoch的损失值。
在这段代码中,num_epochs定义了训练的总轮数。通过循环迭代num_epochs次,我们可以对模型进行多次训练,以提高模型的性能。
注意,这段代码中使用了一个训练器(trainer),它负责更新模型的参数。具体来说,trainer.zero_grad()用于清空模型参数的梯度,l.backward()用于计算梯度,trainer.step()用于更新模型参数。
最后,使用net(features)计算所有训练样本的预测值,并计算它们与真实标签的损失值。然后打印出该epoch的损失值。
请注意,这只是一个示例代码,并不能完整运行。您需要根据实际情况定义损失函数、优化器和数据集迭代器,并对模型进行适当的初始化。
相关问题
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): """Train a model (defined in Chapter 3).""" animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9], legend=['train loss', 'train acc', 'test acc']) for epoch in range(num_epochs): train_metrics = train_epoch_ch3(net, train_iter, loss, updater) test_acc = evaluate_accuracy(net, test_iter) animator.add(epoch + 1, train_metrics + (test_acc,)) train_loss, train_acc = train_metrics assert train_loss < 0.5, train_loss assert train_acc <= 1 and train_acc > 0.7, train_acc assert test_acc <= 1 and test_acc > 0.7, test_acc
这段代码是一个用于训练模型的函数。它接受一个模型 (net)、训练数据集 (train_iter)、测试数据集 (test_iter)、损失函数 (loss)、训练的轮数 (num_epochs) 和更新器 (updater) 等参数。
函数中的核心部分是一个 for 循环,循环的次数是 num_epochs 指定的轮数。在每个轮次中,它通过调用 train_epoch_ch3 函数来训练模型,并计算训练指标 train_metrics。然后,通过调用 evaluate_accuracy 函数计算测试准确率 test_acc。
在循环中,它使用一个 Animator 对象来实时可视化训练过程中的训练损失、训练准确率和测试准确率。每个轮次结束后,它将当前轮次的训练指标和测试准确率添加到 Animator 中进行可视化。
最后,代码中使用 assert 语句来进行断言检查,确保训练损失(train_loss)小于0.5,训练准确率(train_acc)在0.7到1之间,测试准确率(test_acc)在0.7到1之间。如果断言失败,则会抛出 AssertionError。
这段代码的作用是训练模型并可视化训练过程中的指标变化,同时进行一些简单的断言检查,以确保训练的结果符合预期。
in_features = train_features.shape[1] def train(model, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] theta = np.zeros((in_features, 1)) best_theta = np.zeros((in_features, 1)) best_loss = np.inf for epoch in range(num_epochs): train_iter = data_iter(batch_size, train_features, train_labels) for X, y in train_iter: theta=gradientDescent(X, y, theta, learning_rate, weight_decay) train_ls.append(log_rmse(model, train_features, train_labels, theta, len(train_labels)))帮我加个注释
# in_features表示输入特征的数量
in_features = train_features.shape[1]
# 定义训练函数,接受模型、训练数据、测试数据、超参数等作为输入
def train(model, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
# 初始化训练误差和测试误差列表
train_ls, test_ls = [], []
# 初始化模型参数theta(权重)
theta = np.zeros((in_features, 1))
# 初始化最佳模型参数和最小测试误差
best_theta = np.zeros((in_features, 1))
best_loss = np.inf
# 循环迭代训练num_epochs次
for epoch in range(num_epochs):
# 随机生成batch_size大小的数据批次,用于训练
train_iter = data_iter(batch_size, train_features, train_labels)
# 遍历数据批次,计算梯度并更新模型参数theta
for X, y in train_iter:
theta=gradientDescent(X, y, theta, learning_rate, weight_decay)
# 计算每轮迭代后的训练误差和测试误差,并存入对应的列表中
train_ls.append(log_rmse(model, train_features, train_labels, theta, len(train_labels)))
test_ls.append(log_rmse(model, test_features, test_labels, theta, len(test_labels)))
# 如果当前模型参数对应的测试误差比历史最小值更小,则更新最佳模型参数和最小测试误差
if test_ls[-1] < best_loss:
best_theta = theta
best_loss = test_ls[-1]
# 返回最佳模型参数和训练误差、测试误差列表
return best_theta, train_ls, test_ls
阅读全文