ef train(model, train_loader, criterion, optimizer, num_epochs): total_step = len(train_loader) for epoch in range(num_epochs): for i, (features, labels) in enumerate(train_loader): outputs = model(features.permute(0, 2, 1)) loss = criterion(outputs, labels.unsqueeze(1)) optimizer.zero_grad() loss.backward() optimizer.step() if (i + 1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))

时间: 2024-02-15 20:27:03 浏览: 26
这段代码是一个简单的 PyTorch 训练循环,用于训练一个模型。在每个 epoch 中,它首先使用 train_loader 加载训练数据集中的数据,然后对于每个 batch,它计算模型的输出,并计算损失函数值。然后使用 optimizer 进行反向传播和优化器更新。在每个 100 个 batch 的时候,它会输出当前的训练进度。
相关问题

解释代码:def lr_range_test(model, train_loader, optimizer, criterion, init_lr, final_lr, epochs): lr_values = [] loss_values = [] lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer, lambda epoch: epoch) for epoch in range(epochs): for inputs, targets in train_loader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() lr_values.append(lr_scheduler.get_last_lr()[0]) loss_values.append(loss.item()) lr_scheduler.step() return lr_values, loss_values

这段代码定义了一个名为 `lr_range_test` 的函数,用于执行学习率范围测试(LR Range Test)。 函数的输入参数包括: - `model`:待训练的模型 - `train_loader`:用于加载训练数据的数据加载器 - `optimizer`:优化器,用于更新模型参数 - `criterion`:损失函数,用于计算模型的损失 - `init_lr`:初始学习率 - `final_lr`:最终学习率 - `epochs`:训练的总轮数 函数的输出是两个列表:`lr_values` 和 `loss_values`,分别记录了每个学习率对应的损失值。 函数内部首先创建了两个空列表 `lr_values` 和 `loss_values`,用于存储学习率和损失值。然后通过 `optim.lr_scheduler.LambdaLR` 创建了一个学习率调度器 `lr_scheduler`,该调度器会根据当前轮数对学习率进行调整。 接下来,函数通过嵌套的循环进行训练。外层循环是根据设定的总轮数 `epochs` 进行迭代。内层循环是遍历数据加载器 `train_loader`,每次取出一个批次的输入数据 `inputs` 和目标数据 `targets`。 在每次训练迭代中,函数执行以下操作: 1. 清零优化器的梯度:`optimizer.zero_grad()` 2. 使用模型进行前向传播:`outputs = model(inputs)` 3. 计算损失:`loss = criterion(outputs, targets)` 4. 反向传播:`loss.backward()` 5. 更新模型参数:`optimizer.step()` 6. 将当前学习率和损失值加入到对应的列表中:`lr_values.append(lr_scheduler.get_last_lr()[0])` 和 `loss_values.append(loss.item())` 7. 调整学习率:`lr_scheduler.step()` 最终,函数返回了记录了每个学习率和损失值的两个列表 `lr_values` 和 `loss_values`。 这个函数的目的是通过在不同学习率下训练模型并记录损失值,来找到学习率的最佳范围。通过绘制学习率和损失之间的关系图,可以观察到学习率在不同范围内对模型训练的效果。这个图可以帮助我们选择一个合适的学习率,以便在训练过程中达到更好的性能。

解释下面这段代码def do_train( model, data_loader, criterion, optimizer, scheduler, metric ): model.train() global_step = 0 tic_train = time.time() log_steps=100 for epoch in range(num_train_epochs): losses = [] for step,sample in enumerate(data_loader): print(sample) # 表示从样本中获取 input_ids 和 token_type_ids。 input_ids = sample["input_ids"] token_type_ids = sample["token_type_ids"] # 表示使用模型进行前向计算,得到预测结果。 outputs = model(input_ids=input_ids, token_type_ids=token_type_ids) print(outputs)

这段代码是一个训练函数,它的作用是训练一个模型。具体来说,它接受以下参数: - model:要训练的模型。 - data_loader:一个数据加载器,用于加载训练数据。 - criterion:损失函数,用于计算模型的损失。 - optimizer:优化器,用于更新模型的参数。 - scheduler:学习率调度器,用于动态调整学习率。 - metric:度量标准,用于评估模型的性能。 在函数内部,首先将模型设置为训练模式(model.train())。然后开始迭代训练数据,每次迭代都计算模型的损失并更新模型的参数。具体来说,它会进行以下循环: - 对于每个 epoch,都会创建一个空的 losses 列表。 - 对于每个 batch,都会从 data_loader 中获取一个样本 sample,其中包含了 input_ids 和 token_type_ids 两个字段。 - 将 input_ids 和 token_type_ids 作为参数传递给模型,得到模型的输出 outputs。 - 使用 criterion 计算模型的损失,并将其添加到 losses 列表中。 - 使用 optimizer 更新模型的参数。 - 如果 global_step % log_steps == 0,则打印一些训练信息,包括当前 epoch、当前 batch 的损失、当前学习率等。 - 使用 scheduler 调整学习率。 - 将 global_step 加一。 需要注意的是,这段代码中有一些 print() 语句,它们用于调试和理解代码,可以在实际使用中删除。

相关推荐

import torch import torch.nn as nn from torchtext.datasets import AG_NEWS from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator # 数据预处理 tokenizer = get_tokenizer('basic_english') train_iter = AG_NEWS(split='train') counter = Counter() for (label, line) in train_iter: counter.update(tokenizer(line)) vocab = build_vocab_from_iterator([counter], specials=["<unk>"]) word2idx = dict(vocab.stoi) # 设定超参数 embedding_dim = 64 hidden_dim = 128 num_epochs = 10 batch_size = 64 # 定义模型 class RNN(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(RNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, 4) def forward(self, x): x = self.embedding(x) out, _ = self.rnn(x) out = self.fc(out[:, -1, :]) return out # 初始化模型、优化器和损失函数 model = RNN(len(vocab), embedding_dim, hidden_dim) optimizer = torch.optim.Adam(model.parameters()) criterion = nn.CrossEntropyLoss() # 定义数据加载器 train_iter = AG_NEWS(split='train') train_data = [] for (label, line) in train_iter: label = torch.tensor([int(label)-1]) line = torch.tensor([word2idx[word] for word in tokenizer(line)]) train_data.append((line, label)) train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True) # 开始训练 for epoch in range(num_epochs): total_loss = 0.0 for input, target in train_loader: model.zero_grad() output = model(input) loss = criterion(output, target.squeeze()) loss.backward() optimizer.step() total_loss += loss.item() * input.size(0) print("Epoch: {}, Loss: {:.4f}".format(epoch+1, total_loss/len(train_data)))改错

import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码

给你提供了完整代码,但在运行以下代码时出现上述错误,该如何解决?Batch_size = 9 DataSet = DataSet(np.array(x_train), list(y_train)) train_size = int(len(x_train)*0.8) test_size = len(y_train) - train_size train_dataset, test_dataset = torch.utils.data.random_split(DataSet, [train_size, test_size]) TrainDataloader = Data.DataLoader(train_dataset, batch_size=Batch_size, shuffle=False, drop_last=True) TestDataloader = Data.DataLoader(test_dataset, batch_size=Batch_size, shuffle=False, drop_last=True) model = Transformer(n_encoder_inputs=3, n_decoder_inputs=3, Sequence_length=1).to(device) epochs = 10 optimizer = torch.optim.Adam(model.parameters(), lr=0.0001) criterion = torch.nn.MSELoss().to(device) val_loss = [] train_loss = [] best_best_loss = 10000000 for epoch in tqdm(range(epochs)): train_epoch_loss = [] for index, (inputs, targets) in enumerate(TrainDataloader): inputs = torch.tensor(inputs).to(device) targets = torch.tensor(targets).to(device) inputs = inputs.float() targets = targets.float() tgt_in = torch.rand((Batch_size, 1, 3)) outputs = model(inputs, tgt_in) loss = criterion(outputs.float(), targets.float()) print("loss", loss) loss.backward() optimizer.step() train_epoch_loss.append(loss.item()) train_loss.append(np.mean(train_epoch_loss)) val_epoch_loss = _test() val_loss.append(val_epoch_loss) print("epoch:", epoch, "train_epoch_loss:", train_epoch_loss, "val_epoch_loss:", val_epoch_loss) if val_epoch_loss < best_best_loss: best_best_loss = val_epoch_loss best_model = model print("best_best_loss ---------------------------", best_best_loss) torch.save(best_model.state_dict(), 'best_Transformer_trainModel.pth')

train with base lr in the first 100 epochs # and half the lr in the last 100 epochs To train with a base learning rate for the first 100 epochs and half the learning rate for the last 100 epochs, you can use a learning rate scheduler in PyTorch. Here's an example of how you can modify the training loop in your code: import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import MultiStepLR # Define your model, criterion, and optimizer model = YourModel() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # Define the number of epochs and the milestone epochs num_epochs = 200 milestones = [100] # Create a learning rate scheduler scheduler = MultiStepLR(optimizer, milestones=milestones, gamma=0.5) # Train the model for epoch in range(num_epochs): # Train with base lr for the first 100 epochs, and half the lr for the last 100 epochs if epoch >= milestones[0]: scheduler.step() for inputs, labels in train_loader: # Forward pass outputs = model(inputs) loss = criterion(outputs, labels) # Backward pass and optimization optimizer.zero_grad() loss.backward() optimizer.step() # Perform validation or testing after each epoch with torch.no_grad(): # Validation or testing code # Print training information print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}, LR: {scheduler.get_last_lr()[0]}") # Save the model or perform other operations after training In this code snippet, we create a MultiStepLR scheduler and specify the milestones as [100] and gamma as 0.5. The learning rate is halved at the specified milestone epochs. Inside the training loop, we check if the current epoch is greater than or equal to the milestone epoch, and if so, we call scheduler.step() to update the learning rate. Remember to adjust the num_epochs and other hyperparameters according to your specific requirements. 翻译成中文

最新推荐

recommend-type

需要系数法负荷计算软件.zip

需要系数法负荷计算软件
recommend-type

kettle插件-MongoDB Delete2.0

kettle 用于(按条件)删除MongoDB集合数据的插件。 只需要放入kettle 客户端安装目录的 plugins目录下,然后重启kettle客户端即可。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

python中从Excel中取的列没有了0

可能是因为Excel中的列被格式化为数字,而数字前导的0被省略了。可以在Excel中将列的格式更改为文本,这样就会保留数字前导的0。另外,在Python中读取Excel时,可以将列的数据类型指定为字符串,这样就可以保留数字前导的0。例如: ```python import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx', dtype={'列名': str}) # 输出列数据 print(df['列名']) ``` 其中,`dtype={'列名': str}`表示将列名为“列名”的列的数据类型指定为字符串。