def train(): Dtr, Val, Dte = load_data() print('train...') epoch_num = 30 best_model = None min_epochs = 5 min_val_loss = 5 model = cnn().to(device) optimizer = optim.Adam(model.parameters(), lr=0.0008) criterion = nn.CrossEntropyLoss().to(device) # criterion = nn.BCELoss().to(device) for epoch in tqdm(range(epoch_num), ascii=True): train_loss = [] for batch_idx, (data, target) in enumerate(Dtr, 0): try: data, target = Variable(data).to(device), Variable(target.long()).to(device) # target = target.view(target.shape[0], -1) # print(target) optimizer.zero_grad() output = model(data) # print(output) loss = criterion(output, target) loss.backward() optimizer.step() train_loss.append(loss.cpu().item()) except: continue # validation val_loss = get_val_loss(model, Val) model.train() if epoch + 1 > min_epochs and val_loss < min_val_loss: min_val_loss = val_loss best_model = copy.deepcopy(model) torch.save(best_model.state_dict(), r"E:\dataset\Airbnb\training_data\model\cnn.pkl")

时间: 2024-01-13 15:05:00 浏览: 33
这段代码是一个简单的CNN模型的训练过程。它的输入是经过处理的数据集 Dtr, Val, Dte,其中 Dtr 是训练集,Val 是验证集,Dte 是测试集。模型的优化器采用 Adam 算法,损失函数采用交叉熵损失。 在每个 epoch 中,模型会对训练集 Dtr 进行迭代,计算损失并更新参数。同时,模型会在验证集 Val 上计算损失,如果当前的验证损失比之前最小的验证损失要小,则更新最小验证损失和最佳模型参数。当 epoch 数量达到最大值或者验证损失连续 min_epochs 次未下降时,训练过程会结束。 最后,最佳模型的参数会被保存到本地文件中。
相关问题

from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test)

这段代码使用了scikit-learn库中的KNeighborsClassifier算法对wine_data数据集进行分类,并使用train_test_split函数将数据集分为训练集和测试集。其中x和y分别代表数据集的特征和标签,test_size表示测试集占总数据集的比例,random_state用于设定随机数生成器的种子,保证每次运行程序得到的随机数相同。dtr.fit()函数用于训练模型,dtr.score()函数用于计算模型的预测准确率。

#KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test)

这段代码使用sklearn库中的K最近邻(K Nearest Neighbor,KNN)分类器对wine_data数据集进行分类建模。具体来说,代码首先从wine_data中分离出特征数据x和目标数据y,其中x为除第一列以外的所有列,y为第一列的数据。然后,使用train_test_split函数将x和y分别划分为训练集和测试集,其中test_size=0.3表示将30%的数据作为测试集,random_state=125表示随机种子,以确保每次划分结果相同。 接着,使用KNeighborsClassifier函数定义一个KNN分类器模型。然后,使用fit函数对训练集进行拟合,得到一个训练好的模型。最后,使用score函数计算模型在测试集上的精度,并将结果输出。 需要注意的是,KNN算法通过计算输入样本与训练集中所有样本之间的距离来确定输入样本的类别。因此,在实际应用中,需要根据数据集的特点选择合适的距离度量方式和K值,并对模型进行评估和调整,以提高模型的性能。

相关推荐

wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:] from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) #建立模型 dtc=DecisionTreeClassifier(criterion='entropy')#基于熵评价纯度 dtc.fit(x_train,y_train)#拟合数据 y_pre=dtc.predict(x_test) y_pre dtc.predict(wine_target.iloc[:,1:].values) from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre _pre=dtc.Oredlct(y tact mean_squared_error(y_test,y_pre) print("决策树 训练精度:“,dtc.score(x_test,y_test)) print("决策树 泛化精度:“,dtc.score(x_train,y_train)) #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split -wine_data.ilocl:,1:].values y=wine_data.iloc[:,0].values state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) dtr.predict(wine_target.iloc[:,1:].values) neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:“,knn.score(x_test,y_test)) print("KNN泛化精度: knn.score(x_train,y_train))代码解释

In [16]: wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:] In [17]: from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) #建立模型 dtc=DecisionTreeClassifier(criterion='entropy')#基于熵评价纯度 dtc.fit(x_train,y_train)#拟合数据 y_pre=dtc.predict(x_test) y_pre Out[17]: array([3.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 1.0, 3.0, 2.0, 3.0, 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 1.0, 3.0, 2.0, 3.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 1.0, 1.0, 1.0, 2.0, 1.0, 2.0, 1.0, 3.0, 3.0]) In [18]: dtc.predict(wine_target.iloc[:,1:].values) Out[18]: array([2.0, 2.0, 2.0, 3.0, 1.0]) In [19]: from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre y_pre=dtc.predict(x_test) mean_squared_error(y_test,y_pre) Out[19]: 0.0 In [20]: print("决策树 训练精度:",dtc.score(x_test,y_test)) print("决策树 泛化精度:",dtc.score(x_train,y_train)) 决策树 训练精度: 1.0 决策树 泛化精度: 1.0 In [21]: #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) Out[21]: 0.9807692307692307 In [22]: model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model_knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) Out[22]: array([3.0, 3.0, 1.0, 2.0, 1.0, 3.0, 3.0, 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 2.0, 3.0, 1.0, 1.0, 3.0, 1.0, 2.0, 1.0, 2.0, 3.0, 3.0, 2.0, 2.0, 1.0, 1.0, 2.0, 1.0, 1.0, 2.0, 3.0, 1.0, 3.0, 3.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 2.0, 1.0]) In [23]: dtr.predict(wine_target.iloc[:,1:].values) Out[23]: array([2.0, 2.0, 3.0, 3.0, 1.0]) In [24]: neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:",knn.score(x_test,y_test)) print("KNN 泛化精度:",knn.score(x_train,y_train)) KNN 训练精度: 0.9615384615384616 KNN 泛化精度: 0.9586776859504132代码解释

dtc.predict(wine_target.iloc[:,1:].values) Out[33]: array([2., 2., 2., 3., 1.]) In [34]: from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre y_pre=dtc.predict(x_test) mean_squared_error(y_test,y_pre) Out[34]: 0.0 In [35]: print("决策树 训练精度:",dtc.score(x_test,y_test)) print("决策树 泛化精度:",dtc.score(x_train,y_train)) 决策树 训练精度: 1.0 决策树 泛化精度: 1.0 In [39]: #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) Out[39]: 0.9807692307692307 In [42]: model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model_knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) Out[42]: array([3., 3., 1., 2., 1., 3., 3., 1., 2., 3., 2., 1., 2., 1., 2., 1., 2., 2., 3., 1., 1., 3., 1., 2., 1., 2., 3., 3., 2., 2., 1., 1., 2., 1., 1., 2., 3., 1., 3., 3., 2., 2., 2., 2., 1., 1., 1., 1., 2., 3., 2., 1.]) In [43]: dtr.predict(wine_target.iloc[:,1:].values) Out[43]: array([2., 2., 3., 3., 1.]) In [41]: neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:",knn.score(x_test,y_test)) print("KNN 泛化精度:",knn.score(x_train,y_train)) KNN 训练精度: 0.9615384615384616 KNN 泛化精度: 0.9586776859504132

最新推荐

recommend-type

2107381120 王孟丽 实验2 (1).docx

2107381120 王孟丽 实验2 (1).docx
recommend-type

Java项目如何打成可以运行Jar包

Java项目如何打成可以运行Jar包
recommend-type

node-v12.22.8-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这