num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10 lr, num_epochs, device = 0.005, 200, d2l.try_gpu() ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4 key_size, query_size, value_size = 32, 32, 32 norm_shape = [32] train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps) encoder = TransformerEncoder(len(src_vocab), key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout) decoder = TransformerDecoder( len(tgt_vocab), key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout) net = d2l.EncoderDecoder(encoder, decoder) d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device) loss 0.032, 5679.3 tokens/sec on cuda:0
时间: 2023-09-19 07:05:59 浏览: 243
这段代码是用于训练一个基于Transformer模型的序列到序列(seq2seq)的机器翻译网络。首先,定义了一些超参数,例如隐藏层的维度、层数、dropout率、批量大小和时间步数等。接着,使用`d2l.load_data_nmt`函数加载机器翻译数据集,并构建编码器和解码器的Transformer模型。然后,创建一个`EncoderDecoder`对象,将编码器和解码器传递给它。
接下来,调用`d2l.train_seq2seq`函数对模型进行训练。该函数会迭代训练数据集,并根据指定的学习率、训练轮数和目标词汇表对模型进行训练。最后,输出训练过程中的损失和每秒处理的标记数量。
根据输出信息可知,训练过程中的损失为0.032,处理速度为5679.3个标记/秒,在使用GPU设备(cuda:0)进行训练。
相关问题
以下代码出现input depth must be evenly divisible by filter depth: 1 vs 3错误是为什么,代码应该怎么改import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg16 import VGG16 import numpy # 加载FER2013数据集 with open('E:/BaiduNetdiskDownload/fer2013.csv') as f: content = f.readlines() lines = numpy.array(content) num_of_instances = lines.size print("Number of instances: ", num_of_instances) # 定义X和Y X_train, y_train, X_test, y_test = [], [], [], [] # 按行分割数据 for i in range(1, num_of_instances): try: emotion, img, usage = lines[i].split(",") val = img.split(" ") pixels = numpy.array(val, 'float32') emotion = np_utils.to_categorical(emotion, 7) if 'Training' in usage: X_train.append(pixels) y_train.append(emotion) elif 'PublicTest' in usage: X_test.append(pixels) y_test.append(emotion) finally: print("", end="") # 转换成numpy数组 X_train = numpy.array(X_train, 'float32') y_train = numpy.array(y_train, 'float32') X_test = numpy.array(X_test, 'float32') y_test = numpy.array(y_test, 'float32') # 数据预处理 X_train /= 255 X_test /= 255 X_train = X_train.reshape(X_train.shape[0], 48, 48, 1) X_test = X_test.reshape(X_test.shape[0], 48, 48, 1) # 定义VGG16模型 vgg16_model = VGG16(weights='imagenet', include_top=False, input_shape=(48, 48, 3)) # 微调模型 model = Sequential() model.add(vgg16_model) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(7, activation='softmax')) for layer in model.layers[:1]: layer.trainable = False # 定义优化器和损失函数 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) # 数据增强 datagen = ImageDataGenerator( featurewise_center=False, featurewise_std_normalization=False, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) datagen.fit(X_train) # 训练模型 model.fit_generator(datagen.flow(X_train, y_train, batch_size=32), steps_per_epoch=len(X_train) / 32, epochs=10) # 评估模型 score = model.evaluate(X_test, y_test, batch_size=32) print("Test Loss:", score[0]) print("Test Accuracy:", score[1])
这个错误是由于卷积层(Conv2D)中的过滤器深度与输入张量深度不匹配导致的。在这个例子中,过滤器深度(filter depth)是3,但是输入张量(input depth)的深度是1,无法整除,因此出现错误。为了解决这个问题,我们需要用一个输入深度能够被过滤器深度整除的模型输入数据。
代码改动可以通过如下方式完成:
1. 修改模型输入数据的维度,以匹配过滤器深度的要求。
2. 转换输入数据的颜色通道,以生成一个3个通道的输入张量。
下面是一个修改后的代码示例:
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.vgg16 import VGG16
import numpy as np
# 修改输入数据的维度
img_rows, img_cols = 32, 32
input_shape = (img_rows, img_cols, 3)
# 载入数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
# 将数据转换为浮点数类型
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
# 将像素值归一化到[0, 1]
x_train /= 255
x_test /= 255
# 将类向量转换为二进制类矩阵
num_classes = 10
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
# 生成并优化模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
# 在训练数据上生成扩增的数据
batch_size = 100
epochs = 5
datagen = ImageDataGenerator(
featurewise_center=False, # 将输入数据集按均值去中心化
samplewise_center=False, # 将每个样本按均值去中心化
featurewise_std_normalization=False, # 将输入数据除以数据集的标准差
samplewise_std_normalization=False, # 将每个样本除以自身的标准差
zca_whitening=False, # ZCA白化
rotation_range=0, # 随机旋转图像范围
width_shift_range=0.1, # 随机水平移动图像范围
height_shift_range=0.1, # 随机垂直移动图像范围
horizontal_flip=True, # 随机翻转图像
vertical_flip=False # # 随机翻转图像
)
datagen.fit(x_train)
model.fit(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
validation_data=(x_test, y_test),
steps_per_epoch=x_train.shape[0] // batch_size)
# 输出模型的准确率
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
基于VGG的CIFAR-10图像分类代码,resize=32
好的,以下是基于VGG的CIFAR-10图像分类代码,resize=32:
```python
import keras
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import np_utils
import numpy as np
# 超参数定义
batch_size = 128
num_classes = 10
epochs = 100
data_augmentation = True
num_predictions = 20
# 数据加载和预处理
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
# VGG网络定义
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:], activation='relu'))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
# 模型编译和训练
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True)
else:
print('Using real-time data augmentation.')
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=0,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True,
vertical_flip=False)
datagen.fit(x_train)
model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size),
steps_per_epoch=x_train.shape[0] // batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
workers=4)
# 模型评估
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
```
希望可以帮到你!
阅读全文