num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10 lr, num_epochs, device = 0.005, 200, d2l.try_gpu() ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4 key_size, query_size, value_size = 32, 32, 32 norm_shape = [32] train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps) encoder = TransformerEncoder(len(src_vocab), key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout) decoder = TransformerDecoder( len(tgt_vocab), key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout) net = d2l.EncoderDecoder(encoder, decoder) d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device) loss 0.032, 5679.3 tokens/sec on cuda:0

时间: 2023-09-19 16:05:59 浏览: 77
这段代码是用于训练一个基于Transformer模型的序列到序列(seq2seq)的机器翻译网络。首先,定义了一些超参数,例如隐藏层的维度、层数、dropout率、批量大小和时间步数等。接着,使用`d2l.load_data_nmt`函数加载机器翻译数据集,并构建编码器和解码器的Transformer模型。然后,创建一个`EncoderDecoder`对象,将编码器和解码器传递给它。 接下来,调用`d2l.train_seq2seq`函数对模型进行训练。该函数会迭代训练数据集,并根据指定的学习率、训练轮数和目标词汇表对模型进行训练。最后,输出训练过程中的损失和每秒处理的标记数量。 根据输出信息可知,训练过程中的损失为0.032,处理速度为5679.3个标记/秒,在使用GPU设备(cuda:0)进行训练。
相关问题

以下代码出现input depth must be evenly divisible by filter depth: 1 vs 3错误是为什么,代码应该怎么改import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg16 import VGG16 import numpy # 加载FER2013数据集 with open('E:/BaiduNetdiskDownload/fer2013.csv') as f: content = f.readlines() lines = numpy.array(content) num_of_instances = lines.size print("Number of instances: ", num_of_instances) # 定义X和Y X_train, y_train, X_test, y_test = [], [], [], [] # 按行分割数据 for i in range(1, num_of_instances): try: emotion, img, usage = lines[i].split(",") val = img.split(" ") pixels = numpy.array(val, 'float32') emotion = np_utils.to_categorical(emotion, 7) if 'Training' in usage: X_train.append(pixels) y_train.append(emotion) elif 'PublicTest' in usage: X_test.append(pixels) y_test.append(emotion) finally: print("", end="") # 转换成numpy数组 X_train = numpy.array(X_train, 'float32') y_train = numpy.array(y_train, 'float32') X_test = numpy.array(X_test, 'float32') y_test = numpy.array(y_test, 'float32') # 数据预处理 X_train /= 255 X_test /= 255 X_train = X_train.reshape(X_train.shape[0], 48, 48, 1) X_test = X_test.reshape(X_test.shape[0], 48, 48, 1) # 定义VGG16模型 vgg16_model = VGG16(weights='imagenet', include_top=False, input_shape=(48, 48, 3)) # 微调模型 model = Sequential() model.add(vgg16_model) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(7, activation='softmax')) for layer in model.layers[:1]: layer.trainable = False # 定义优化器和损失函数 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) # 数据增强 datagen = ImageDataGenerator( featurewise_center=False, featurewise_std_normalization=False, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) datagen.fit(X_train) # 训练模型 model.fit_generator(datagen.flow(X_train, y_train, batch_size=32), steps_per_epoch=len(X_train) / 32, epochs=10) # 评估模型 score = model.evaluate(X_test, y_test, batch_size=32) print("Test Loss:", score[0]) print("Test Accuracy:", score[1])

这个错误是由于卷积层(Conv2D)中的过滤器深度与输入张量深度不匹配导致的。在这个例子中,过滤器深度(filter depth)是3,但是输入张量(input depth)的深度是1,无法整除,因此出现错误。为了解决这个问题,我们需要用一个输入深度能够被过滤器深度整除的模型输入数据。 代码改动可以通过如下方式完成: 1. 修改模型输入数据的维度,以匹配过滤器深度的要求。 2. 转换输入数据的颜色通道,以生成一个3个通道的输入张量。 下面是一个修改后的代码示例: import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg16 import VGG16 import numpy as np # 修改输入数据的维度 img_rows, img_cols = 32, 32 input_shape = (img_rows, img_cols, 3) # 载入数据集 (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() # 将数据转换为浮点数类型 x_train = x_train.astype('float32') x_test = x_test.astype('float32') # 将像素值归一化到[0, 1] x_train /= 255 x_test /= 255 # 将类向量转换为二进制类矩阵 num_classes = 10 y_train = np_utils.to_categorical(y_train, num_classes) y_test = np_utils.to_categorical(y_test, num_classes) # 生成并优化模型 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) # 在训练数据上生成扩增的数据 batch_size = 100 epochs = 5 datagen = ImageDataGenerator( featurewise_center=False, # 将输入数据集按均值去中心化 samplewise_center=False, # 将每个样本按均值去中心化 featurewise_std_normalization=False, # 将输入数据除以数据集的标准差 samplewise_std_normalization=False, # 将每个样本除以自身的标准差 zca_whitening=False, # ZCA白化 rotation_range=0, # 随机旋转图像范围 width_shift_range=0.1, # 随机水平移动图像范围 height_shift_range=0.1, # 随机垂直移动图像范围 horizontal_flip=True, # 随机翻转图像 vertical_flip=False # # 随机翻转图像 ) datagen.fit(x_train) model.fit(datagen.flow(x_train, y_train, batch_size=batch_size), epochs=epochs, validation_data=(x_test, y_test), steps_per_epoch=x_train.shape[0] // batch_size) # 输出模型的准确率 scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1])

基于VGG的CIFAR-10图像分类代码,resize=32

好的,以下是基于VGG的CIFAR-10图像分类代码,resize=32: ```python import keras from keras.datasets import cifar10 from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.preprocessing.image import ImageDataGenerator from keras.utils import np_utils import numpy as np # 超参数定义 batch_size = 128 num_classes = 10 epochs = 100 data_augmentation = True num_predictions = 20 # 数据加载和预处理 (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 y_train = np_utils.to_categorical(y_train, num_classes) y_test = np_utils.to_categorical(y_test, num_classes) # VGG网络定义 model = Sequential() model.add(Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:], activation='relu')) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) # 模型编译和训练 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) if not data_augmentation: print('Not using data augmentation.') model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) else: print('Using real-time data augmentation.') datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False) datagen.fit(x_train) model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), steps_per_epoch=x_train.shape[0] // batch_size, epochs=epochs, validation_data=(x_test, y_test), workers=4) # 模型评估 scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) ``` 希望可以帮到你!

相关推荐

最新推荐

recommend-type

安装NumPy教程-详细版

附件是安装NumPy教程_详细版,文件绿色安全,请大家放心下载,仅供交流学习使用,无任何商业目的!
recommend-type

语音端点检测及其在Matlab中的实现.zip

语音端点检测及其在Matlab中的实现.zip
recommend-type

C#文档打印程序Demo

使用C#完成一般文档的打印,带有页眉,页脚文档打印,表格打印,打印预览等
recommend-type

DirectX修复工具-4-194985.zip

directx修复工具 DirectX修复工具(DirectX repair)是系统DirectX组件修复工具,DirectX修复工具主要是用于检测当前系统的DirectX状态,若发现异常情况就可以马上进行修复,非常快捷,使用效果也非常好。
recommend-type

Python手动实现人脸识别算法

人脸识别的主要算法 其核心算法是 欧式距离算法使用该算法计算两张脸的面部特征差异,一般在0.6 以下都可以被认为是同一张脸 人脸识别的主要步骤 1 获得人脸图片 2 将人脸图片转为128D的矩阵(这个也就是人脸特征的一种数字化表现) 3 保存人脸128D的特征到文件中 4 获取其他人脸转为128D特征通过欧式距离算法与我们保存的特征对比,如果差距在0.6以下就说明两张脸差距比较小
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。