transformer模型 实战
时间: 2024-12-26 08:15:13 浏览: 8
Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google于2017年在论文《Attention is All You Need》中提出,它在自然语言处理领域取得了革命性的突破,尤其是机器翻译和文本生成任务上。实战中,Transformer通常用于:
1. **机器翻译**:如Google的GNMT (Google Neural Machine Translation)系统,通过编码器将源语言句子转化为向量,解码器再根据这些向量生成目标语言的等效句子。
2. **文本分类**:在情感分析、主题分类等任务中,可以对输入文本进行分段,然后每个部分作为Transformer的一个输入序列。
3. **问答系统**:如BERT、RoBERTa等预训练模型,在阅读理解、闭合式问题回答等方面展现出强大的能力。
4. **文本生成**:例如生成文章、诗歌、代码片段等,通过条件语言模型如GPT系列。
5. **对话系统**:像ChitChatGPT,就是基于Transformer的聊天机器人,能够理解和回应用户的问题。
在实际应用中,使用Transformer需要数据预处理(如分词、编码)、模型训练(调整超参数、优化算法)以及部署和推理。如果你想要深入实践,建议从搭建基础环境开始,选择一个适合入门的开源库,比如PyTorch或Hugging Face的Transformers,跟着教程一步步实践。
相关问题
transformer模型实战
Transformer模型实战可以参考哈佛大学2018年4月的一个实现版本。该实现版本详细解释了Transformer模型的整体结构和细节,并附上了模型局部图和类的依赖关系图,使得解释更加全面和详细。在Transformer模型中,Self-Attention在Encoder和Decoder内部都有应用。
使用pytorch实现transformer模型实战案例
好的,下面提供一个使用PyTorch实现Transformer模型的实战案例。
首先,我们需要导入必要的库和模块:
```python
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
```
接着,我们定义一些超参数:
```python
d_model = 512 # 模型维度
n_layers = 6 # 层数
n_heads = 8 # 头数
dropout = 0.1 # Dropout概率
```
定义位置编码函数:
```python
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False)
return self.dropout(x)
```
定义多头自注意力机制模块:
```python
class MultiHeadedAttention(nn.Module):
def __init__(self, n_heads, d_model, dropout=0.1):
super(MultiHeadedAttention, self).__init__()
assert d_model % n_heads == 0
self.d_k = d_model // n_heads
self.n_heads = n_heads
self.linears = nn.ModuleList([nn.Linear(d_model, d_model) for _ in range(4)])
self.dropout = nn.Dropout(p=dropout)
def attention(self, q, k, v, mask=None, dropout=None):
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, v), p_attn
def forward(self, query, key, value, mask=None):
if mask is not None:
mask = mask.unsqueeze(1)
nbatches = query.size(0)
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = [l(x).view(nbatches, -1, self.n_heads, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
# 2) Apply attention on all the projected vectors in batch.
x, attn = self.attention(query, key, value, mask=mask, dropout=self.dropout)
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.n_heads * self.d_k)
return self.linears[-1](x), attn
```
定义前馈神经网络模块:
```python
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
```
定义一个Transformer层模块:
```python
class TransformerLayer(nn.Module):
def __init__(self, d_model, n_heads, dropout=0.1):
super(TransformerLayer, self).__init__()
self.self_attn = MultiHeadedAttention(n_heads, d_model, dropout=dropout)
self.feed_forward = PositionwiseFeedForward(d_model, d_model*4, dropout=dropout)
self.sublayer = nn.ModuleList([SublayerConnection(d_model, dropout=dropout) for _ in range(2)])
self.d_model = d_model
def forward(self, x, mask):
x, _ = self.self_attn(x, x, x, mask=mask)
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask=mask))
x = self.sublayer[1](x, self.feed_forward)
return x
```
定义一个包含若干个Transformer层的Transformer模块:
```python
class Transformer(nn.Module):
def __init__(self, n_layers, d_model, n_heads, dropout=0.1):
super(Transformer, self).__init__()
self.layers = nn.ModuleList([TransformerLayer(d_model, n_heads, dropout=dropout) for _ in range(n_layers)])
self.norm = nn.LayerNorm(d_model)
def forward(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
```
定义一个SublayerConnection模块,用于连接子层:
```python
class SublayerConnection(nn.Module):
def __init__(self, size, dropout=0.1):
super(SublayerConnection, self).__init__()
self.norm = nn.LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
return x + self.dropout(sublayer(self.norm(x)))
```
最后,我们可以使用这些模块来构建一个Transformer模型:
```python
class TransformerModel(nn.Module):
def __init__(self, vocab_size, d_model, n_layers, n_heads, dropout=0.1):
super(TransformerModel, self).__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoder = PositionalEncoding(d_model, dropout=dropout)
self.transformer = Transformer(n_layers, d_model, n_heads, dropout=dropout)
self.decoder = nn.Linear(d_model, vocab_size)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embedding.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src, mask):
src = self.embedding(src)
src = self.pos_encoder(src)
output = self.transformer(src, mask)
output = self.decoder(output)
return output
```
以上就是使用PyTorch实现Transformer模型的实战案例。可以根据具体的需求进行修改和扩展。
阅读全文