基于resnet实现图像分类
时间: 2023-11-14 20:02:28 浏览: 158
要基于ResNet实现图像分类,你可以按照以下步骤进行操作:
1. 导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torchvision.models as models
```
2. 加载预训练的ResNet模型:
```python
resnet = models.resnet50(pretrained=True)
```
3. 替换最后一层(全连接层)的输出单元数以适应分类任务的类别数:
```python
num_classes = 10 # 假设有10个类别
resnet.fc = nn.Linear(resnet.fc.in_features, num_classes)
```
4. 定义损失函数和优化器:
```python
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(resnet.parameters(), lr=0.001, momentum=0.9)
```
5. 训练模型:
```python
for epoch in range(num_epochs):
# 前向传播
outputs = resnet(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
阅读全文