多元线性回归 Python 代码
时间: 2024-06-01 08:06:53 浏览: 126
多元线性回归代码.zip
多元线性回归是一种统计学习方法,用于建立多个自变量与一个因变量之间的线性关系模型,可以用来预测未来的数值。下面是一个简单的 Python 代码示例:
```python
import pandas as pd
from sklearn.linear_model import LinearRegression
# 读入数据
data = pd.read_csv('data.csv')
# 分离自变量和因变量
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
# 建立多元线性回归模型
model = LinearRegression()
model.fit(X, y)
# 预测结果
y_pred = model.predict(X)
# 输出模型的系数和截距
print('Coefficients: ', model.coef_)
print('Intercept: ', model.intercept_)
# 输出模型的评分(R-squared)
print('R-squared: ', model.score(X, y))
```
其中,`pandas` 是一个用于数据处理的 Python 库,`sklearn.linear_model` 是 `scikit-learn` 中用于建立线性回归模型的库。在代码中,首先我们通过 `pd.read_csv` 函数读入数据,然后使用 `iloc` 函数分离出自变量和因变量。接着,我们建立一个 `LinearRegression` 对象并调用 `fit` 函数进行拟合。最后,我们使用 `predict` 函数预测结果,并输出模型的系数、截距和评分等信息。
阅读全文