用pd读C:\Users\Admin\Desktop的1000.xlsx文件
时间: 2023-07-21 10:06:05 浏览: 82
要使用`pd.read_excel()`读取位于 "C:\Users\Admin\Desktop" 目录下的 "1000.xlsx" 文件,可以将文件的完整路径作为参数传递给该函数。以下是一个示例代码:
```python
import pandas as pd
# 读取Excel文件
file_path = r'C:\Users\Admin\Desktop\1000.xlsx'
df = pd.read_excel(file_path)
# 打印读取的数据
print(df)
```
在上述代码中,`file_path` 变量存储了 "1000.xlsx" 文件的完整路径。需要注意的是,在Windows路径中,反斜杠 `\` 是特殊字符,因此可以使用原始字符串(以 `r` 开头)来表示路径,以避免转义字符的问题。
然后,使用 `pd.read_excel()` 函数读取指定路径下的 Excel 文件,并将数据存储在 `df` 变量中。最后,通过打印 `df` 来查看读取的数据。
请确保将 `file_path` 替换为你实际的 Excel 文件路径。如果 Excel 文件与你的 Python 脚本位于同一目录下,只需提供文件名即可。否则,请提供完整的文件路径。
相关问题
import pandas as pd from difflib import SequenceMatcher # 读取Excel文件 df = pd.read_excel(r'C:\Users\Admin\Desktop\1000.xlsx') # 比较相似度函数 def similarity(a, b): return SequenceMatcher(None, str(a), str(b)).ratio() # 创建同名和不同名的DataFrame same_df = pd.DataFrame(columns=df.columns) unsame_df = pd.DataFrame(columns=df.columns) # 遍历每一行数据 for i, row in df.iterrows(): is_same = False for j, same_row in same_df.iterrows(): if row['author'] == same_row['author'] and similarity(row['org'], same_row['org']) > 0.8: is_same = True same_df.loc[j] = same_row.append(row) break if not is_same: unsame_df = unsame_df.append(row) # 保存同名和不同名的数据为Excel文件 same_df.to_excel(r'C:\Users\Admin\Desktop\same.xlsx', index=False) unsame_df.to_excel(r'C:\Users\Admin\Desktop\unsame.xlsx', index=False) print("同名的数据已保存为same.xlsx") print("不同名的数据已保存为unsame.xlsx") 这段代码 报错AttributeError: 'DataFrame' object has no attribute 'append' 如何修改
报错 "AttributeError: 'DataFrame' object has no attribute 'append'" 是因为在代码中使用了错误的 DataFrame 方法。DataFrame 对象没有 "append" 方法,无法直接将行添加到 DataFrame 中。
要修正这个问题,可以使用 `pd.concat()` 函数将行连接起来,然后重新赋值给 DataFrame。
以下是修正后的代码:
```python
import pandas as pd
from difflib import SequenceMatcher
# 读取Excel文件
df = pd.read_excel(r'C:\Users\Admin\Desktop\1000.xlsx')
# 比较相似度函数
def similarity(a, b):
return SequenceMatcher(None, str(a), str(b)).ratio()
# 创建同名和不同名的DataFrame
same_df = pd.DataFrame(columns=df.columns)
unsame_df = pd.DataFrame(columns=df.columns)
# 遍历每一行数据
for i, row in df.iterrows():
is_same = False
for j, same_row in same_df.iterrows():
if row['author'] == same_row['author'] and similarity(row['org'], same_row['org']) > 0.8:
is_same = True
same_df = pd.concat([same_df, row.to_frame().T], axis=0)
break
if not is_same:
unsame_df = pd.concat([unsame_df, row.to_frame().T], axis=0)
# 保存同名和不同名的数据为Excel文件
same_df.to_excel(r'C:\Users\Admin\Desktop\same.xlsx', index=False)
unsame_df.to_excel(r'C:\Users\Admin\Desktop\unsame.xlsx', index=False)
print("同名的数据已保存为same.xlsx")
print("不同名的数据已保存为unsame.xlsx")
```
在修正的代码中,使用 `pd.concat()` 函数将新的行连接到 DataFrame 中。将 `row.to_frame().T` 转换为 DataFrame,并通过 `axis=0` 参数进行行连接。
请确保将文件的保存路径修改为你想要保存的位置。
读取桌面的1000.xlsx文件,并比较author列的相似度,将相似度>0.9的合并保存,输出为merged_1000.xlsx文件
要读取桌面上的1000.xlsx文件并比较其中的"author"列的相似度,并将相似度大于0.9的行进行合并保存为merged_1000.xlsx文件,可以使用以下代码:
```python
import pandas as pd
from difflib import SequenceMatcher
# 读取Excel文件
file_path = r'C:\Users\Admin\Desktop\1000.xlsx'
df = pd.read_excel(file_path)
# 比较相似度函数
def similarity(a, b):
return SequenceMatcher(None, str(a), str(b)).ratio()
# 合并相似度大于0.9的行
merged_df = pd.DataFrame(columns=df.columns) # 创建空的DataFrame用于保存合并后的数据
for i, row in df.iterrows():
if i == 0:
merged_df = merged_df.append(row) # 将第一行添加到合并后的DataFrame中
else:
is_merged = False
for j, merged_row in merged_df.iterrows():
if similarity(row['author'], merged_row['author']) > 0.9: # 比较相似度
merged_df.at[j, 'author'] += ', ' + str(row['author']) # 合并author列
is_merged = True
break
if not is_merged:
merged_df = merged_df.append(row) # 将不与任何行相似的行添加到合并后的DataFrame中
# 保存合并后的数据为Excel文件
merged_file_path = r'C:\Users\Admin\Desktop\merged_1000.xlsx'
merged_df.to_excel(merged_file_path, index=False)
print("合并后的数据已保存到: ", merged_file_path)
```
在上述代码中,首先导入了pandas库和difflib库的SequenceMatcher类。然后,使用pd.read_excel()函数读取桌面上的1000.xlsx文件,并将其存储在名为df的DataFrame对象中。
接下来,定义了一个相似度比较函数similarity(),该函数使用SequenceMatcher类来计算两个字符串的相似度。
然后,创建了一个空的DataFrame merged_df 用于保存合并后的数据。
通过迭代df中的每一行,与merged_df中的每一行进行相似度比较。如果相似度大于0.9,则将当前行的"author"列合并到merged_df中相似行的"author"列中。如果不与任何行相似,则将当前行添加到merged_df中。
最后,使用to_excel()方法将合并后的数据保存为merged_1000.xlsx文件。
请确保将file_path 和 merged_file_path 替换为你实际的文件路径。
阅读全文