agg_type_pym.columns = pd.Index(['pym_{}_{}_{}_{}_{}_{}'.format(e[0], t[0], t[1], t[2], '%dM' % m, e[1]) for e in agg_type_pym.columns.tolist()]) agg_type_pym = agg_type_pym.reset_index()
时间: 2024-04-19 16:28:54 浏览: 76
这段代码是将 `agg_type_pym` DataFrame 的列名进行格式化,并赋予新的列名。使用了列表推导式来生成新的列名,其中使用了字符串的 `format` 方法来根据每个列名的不同部分进行格式化。格式化的模板是 `'pym_{}_{}_{}_{}_{}_{}'`,其中 `{}` 是占位符。每个占位符分别对应了 `e[0]`、`t[0]`、`t[1]`、`t[2]`、`'%dM' % m` 和 `e[1]` 这些变量的值。最后,通过调用 `pd.Index` 将生成的新列名赋值给 `agg_type_pym.columns`。接下来,通过调用 `reset_index()` 来重置索引,重新生成一个新的 DataFrame。
相关问题
agg_csm.columns = pd.Index(['{}_{}_{}'.format(e[0], '%dM' % m, e[1]) for e in agg_csm.columns.tolist()]) agg_csm = agg_csm.reset_index()
这段代码是将聚合后的 `agg_csm` DataFrame 的列名进行重命名,并重置索引。
首先,使用 `agg_csm.columns.tolist()` 将 `agg_csm` DataFrame 的列名转换为列表。然后,通过列表推导式遍历每个列名,并使用字符串格式化将其重命名为新的列名。
新的列名的格式为 `{}_{}_{}'format(e[0], '%dM' % m, e[1])`,其中 `{}` 表示占位符,`e[0]` 表示原始列名的第一个部分,`'%dM' % m` 表示月份部分,`e[1]` 表示原始列名的第二个部分。
重命名后,使用 `pd.Index()` 将重命名后的列名列表转换为新的索引,并将其赋值给 `agg_csm.columns`,以更新 `agg_csm` DataFrame 的列名。
接下来,使用 `agg_csm.reset_index()` 重置 `agg_csm` DataFrame 的索引,将原始索引转换为默认的整数索引,并生成一个新的索引列。
通过这段代码,可以对聚合后的 DataFrame 进行列名重命名,并重置索引。
class TemporalBlock(nn.Module): """ Temporal block with the following layers: - 2x3x3, 1x3x3, spatio-temporal pyramid pooling - dropout - skip connection. """ def __init__(self, in_channels, out_channels=None, use_pyramid_pooling=False, pool_sizes=None): super().__init__() self.in_channels = in_channels self.half_channels = in_channels // 2 self.out_channels = out_channels or self.in_channels self.kernels = [(2, 3, 3), (1, 3, 3)] # Flag for spatio-temporal pyramid pooling self.use_pyramid_pooling = use_pyramid_pooling # 3 convolution paths: 2x3x3, 1x3x3, 1x1x1 self.convolution_paths = [] for kernel_size in self.kernels: self.convolution_paths.append( nn.Sequential( conv_1x1x1_norm_activated(self.in_channels, self.half_channels), CausalConv3d(self.half_channels, self.half_channels, kernel_size=kernel_size), ) ) self.convolution_paths.append(conv_1x1x1_norm_activated(self.in_channels, self.half_channels)) self.convolution_paths = nn.ModuleList(self.convolution_paths) agg_in_channels = len(self.convolution_paths) * self.half_channels if self.use_pyramid_pooling: assert pool_sizes is not None, "setting must contain the list of kernel_size, but is None." reduction_channels = self.in_channels // 3 self.pyramid_pooling = PyramidSpatioTemporalPooling(self.in_channels, reduction_channels, pool_sizes) agg_in_channels += len(pool_sizes) * reduction_channels # Feature aggregation self.aggregation = nn.Sequential( conv_1x1x1_norm_activated(agg_in_channels, self.out_channels),) if self.out_channels != self.in_channels: self.projection = nn.Sequential( nn.Conv3d(self.in_channels, self.out_channels, kernel_size=1, bias=False), nn.BatchNorm3d(self.out_channels), ) else: self.projection = None网络结构是什么?
这段代码实现了一个名为 TemporalBlock 的神经网络模块,该模块包括以下层:
- 3 个卷积路径: 2x3x3 卷积、1x3x3 卷积和 1x1x1 卷积
- dropout 层
- skip 连接
- 可选的 spatio-temporal pyramid pooling 层
- 最后是特征聚合和投影层(如果输入和输出通道数不同)
其中,卷积路径通过 nn.Sequential 和 nn.ModuleList 封装,方便调用和管理。
TemporalBlock 的输入通道数为 in_channels,输出通道数为 out_channels(如果未指定,则默认与输入通道数相同),通过 kernels 参数定义了 3 个卷积核的大小,其中前两个卷积路径使用 2x3x3 和 1x3x3 卷积核,第三个卷积路径使用 1x1x1 卷积核。
如果 use_pyramid_pooling 参数为 True,则会添加一个 spatio-temporal pyramid pooling 层,对输入进行空间和时间维度的金字塔池化,提取多尺度特征,其中 pool_sizes 参数指定了池化核的大小。
最后,特征聚合层将多个路径的特征拼接起来,通过 1x1x1 卷积将通道数调整为 out_channels,如果输入和输出通道数不同,则添加一个投影层进行通道数的调整。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)