python天气词云图

时间: 2023-11-13 07:05:45 浏览: 179
您可以使用Python中的wordcloud库和jieba库来制作天气词云图。首先,您需要获取天气数据并提取出关键词,然后使用wordcloud库生成词云图。 以下是一个简单的示例代码: ```python import requests import jieba from wordcloud import WordCloud # 获取天气数据 url = 'http://wthrcdn.etouch.cn/weather_mini?city=北京' response = requests.get(url) data = response.json() weather = data['data']['forecast'][0]['type'] # 提取关键词 words = jieba.cut(weather) # 生成词云图 wordcloud = WordCloud(font_path='msyh.ttc', background_color='white').generate(' '.join(words)) wordcloud.to_file('weather.png') ``` 这段代码会生成一个名为weather.png的词云图,其中包含了天气数据中的关键词。
相关问题

Python语言代码书写: 爬取网站推荐的前十个旅游热门城市,做个词云图。然后转盘选取其中一个,弹出天气,路线和美食选项。点开天气,爬取实时的天气,点开路线能给出高铁飞机路线和费用,美食就弹出一段介绍和图片

好的,下面是一个使用Python实现你需求的示例代码。这个代码分为几个部分:爬取旅游热门城市、制作词云图、转盘选取城市、弹出天气、路线和美食选项。 首先,你需要安装一些Python库: ```bash pip install requests beautifulsoup4 wordcloud pandas numpy matplotlib ``` 然后,编写代码: ```python import requests from bs4 import BeautifulSoup from wordcloud import WordCloud import pandas as pd import numpy as np import matplotlib.pyplot as plt import random # 爬取旅游热门城市 def get_top_cities(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') cities = [city.get_text() for city in soup.select('.city-name')] return cities[:10] # 制作词云图 def create_wordcloud(cities): text = ' '.join(cities) wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text) plt.figure(figsize=(10, 5)) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.show() # 转盘选取城市 def spin_wheel(cities): return random.choice(cities) # 获取天气信息 def get_weather(city): url = f'https://www.weather.com/{city}' response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') weather = soup.select('.CurrentConditions--tempValue--3KcTQ')[0].get_text() return weather # 获取路线信息 def get_routes(city): url = f'https://www.routes.com/{city}' response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') routes = soup.select('.route-info') return routes # 获取美食信息 def get_food(city): url = f'https://www.food.com/{city}' response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') food_info = soup.select('.food-info') return food_info # 主函数 def main(): url = 'https://www.travel.com/top-cities' cities = get_top_cities(url) create_wordcloud(cities) selected_city = spin_wheel(cities) print(f'选中的城市是:{selected_city}') weather = get_weather(selected_city) print(f'天气:{weather}') routes = get_routes(selected_city) print(f'路线:{routes}') food_info = get_food(selected_city) print(f'美食:{food_info}') if __name__ == '__main__': main() ``` ### 代码说明: 1. **爬取旅游热门城市**:使用`requests`和`BeautifulSoup`库从指定的URL爬取前十个旅游热门城市。 2. **制作词云图**:使用`wordcloud`库生成词云图。 3. **转盘选取城市**:使用`random`库随机选取一个城市。 4. **获取天气信息**:爬取指定城市的天气信息。 5. **获取路线信息**:爬取指定城市的路线信息。 6. **获取美食信息**:爬取指定城市的美食信息。 请注意,具体的URL和选择器需要根据实际网站的结构进行调整。

(2)利用jieba库进行中文词频统计,强调字典、列表的应用; (3)结合词频统计结果利用wordcloud库进行词云图的可视化;

好的,下面我来介绍一下如何利用jieba库进行中文词频统计,并结合词频统计结果利用wordcloud库进行词云图的可视化。 首先,我们需要安装jieba和wordcloud库,可以使用以下命令进行安装: ``` pip install jieba pip install wordcloud ``` 接下来,我们先来看一下如何使用jieba库进行中文分词和词频统计。 ```python import jieba # 加载自定义词典 jieba.load_userdict('user_dict.txt') # 待统计文本 text = '今天天气真好,适合出去玩' # 利用jieba库进行分词 seg_list = jieba.cut(text) # 遍历分词结果并统计词频 word_freq = {} for word in seg_list: if len(word) > 1: word_freq[word] = word_freq.get(word, 0) + 1 # 输出词频结果 for word, freq in word_freq.items(): print(word, freq) ``` 上述代码中,我们首先使用`jieba.load_userdict()`方法加载自定义词典(可以是一个txt文件),然后利用`jieba.cut()`方法对待统计的文本进行分词,得到分词结果。接着,我们遍历分词结果,并使用字典记录每个词出现的次数,最后输出词频统计结果。 接下来,我们可以使用wordcloud库将词频统计结果可视化为词云图。 ```python from wordcloud import WordCloud import matplotlib.pyplot as plt # 构建词云对象 wc = WordCloud(background_color='white', width=800, height=600) # 使用词频统计结果生成词云图 wc.generate_from_frequencies(word_freq) # 显示词云图 plt.imshow(wc) plt.axis('off') plt.show() ``` 上述代码中,我们首先构建了一个词云对象,并指定了词云图的背景颜色、宽度和高度。然后,我们调用`wc.generate_from_frequencies()`方法,将词频统计结果传入,生成词云图。最后,使用`plt.imshow()`方法显示词云图,并调用`plt.axis('off')`方法隐藏坐标轴,最后使用`plt.show()`方法显示词云图。 以上就是利用jieba库进行中文词频统计,并结合wordcloud库进行词云图可视化的方法。需要注意的是,在实际应用中,我们需要针对不同的文本进行适当的参数调整,以得到更好的词云效果。
阅读全文

相关推荐

import pandas as pd import numpy as np import matplotlib.pyplot as plt import jieba import requests import re from io import BytesIO import imageio # 设置城市和时间 city = '上海' year = 2021 quarter = 2 # 爬取数据 url = f'http://tianqi.2345.com/t/wea_history/js/{city}/{year}/{quarter}.js' response = requests.get(url) text = response.content.decode('gbk') # 正则表达式匹配 pattern = re.compile(r'(\d{4}-\d{2}-\d{2})\|(\d{1,2})\|(\d{1,2})\|(\d{1,3})\|(\d{1,3})\|(\D+)\n') result = pattern.findall(text) # 数据整理 data = pd.DataFrame(result, columns=['日期', '最高温度', '最低温度', '空气质量指数', '风力等级', '天气']) data[['最高温度', '最低温度', '空气质量指数', '风力等级']] = data[['最高温度', '最低温度', '空气质量指数', '风力等级']].astype(int) data['日期'] = pd.to_datetime(data['日期']) # 可视化分析 # 统计天气情况 weather_count = data['天气'].value_counts() weather_count = weather_count[:10] # 分词统计 seg_list = jieba.cut(' '.join(data['天气'].tolist())) words = {} for word in seg_list: if len(word) < 2: continue if word in words: words[word] += 1 else: words[word] = 1 # 绘制柱状图和词云图 plt.figure(figsize=(10, 5)) plt.bar(weather_count.index, weather_count.values) plt.title(f'{city}{year}年第{quarter}季度天气情况') plt.xlabel('天气') plt.ylabel('次数') plt.savefig('weather_bar.png') wordcloud = pd.DataFrame(list(words.items()), columns=['word', 'count']) mask_image = imageio.imread('cloud_mask.png') wordcloud.plot(kind='scatter', x='count', y='count', alpha=0.5, s=300, cmap='Reds', figsize=(10, 5)) for i in range(len(wordcloud)): plt.text(wordcloud.iloc[i]['count'], wordcloud.iloc[i]['count'], wordcloud.iloc[i]['word'], ha='center', va='center', fontproperties='SimHei') plt.axis('off') plt.imshow(mask_image, cmap=plt.cm.gray, interpolation='bilinear') plt.savefig('weather_wordcloud.png')这个python代码有错误,请改正以使该代码运行成功

大家在看

recommend-type

计算机图形学-小型图形绘制程序

计算机图形学-小型图形绘制程序
recommend-type

安装验证-浅谈mysql和mariadb区别

3.5 安装验证 客户机上能够启动软件就说明安装成功。 MotorSolve 成功画面 3.6 帮助 MotorSolve 上端的界面中的帮助按钮,点击可以查看详细的说明
recommend-type

基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip

【资源说明】 基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

国密SM4加解密SM2签名验签for delphi等语言.rar

基于C#编写的COM组件DLL,可实现SM2签名验签,SM4加解密,100%适用于黑龙江省国家医保接口中进行应用。 1、调用DLL名称:JQSM2SM4.dll 加解密类名:JQSM2SM4.SM2SM4Util CLSID=5B38DCB3-038C-4992-9FA3-1D697474FC70 2、GetSM2SM4函数说明 函数原型public string GetSM2SM4(string smType, string sM2Prikey, string sM4Key, string sInput) 1)参数一smType:填写固定字符串,识别功能,分别实现SM2签名、SM4解密、SM4加密。SM2签名入参填写“SM2Sign”、SM4解密入参填写“SM4DecryptECB”、SM4加密入参填写“SM4EncryptECB”. 2)参数二sM2Prikey:SM2私钥 3)参数三sM4Key:SM4密钥 4)参数四sInput:当smType=SM2Sign,则sInput入参填写SM4加密串;当smType=SM4DecryptECB,则sInput入参填写待解密SM4密文串;当smType=SM4EncryptECB,则sInput入参填写待加密的明文串; 5)函数返回值:当smType=SM2Sign,则返回SM2签名信息;当smType=SM4DecryptECB,则返回SM4解密信息;当smType=SM4EncryptECB,则返回SM4加密信息;异常时,则返回“加解密异常:详细错误说明” 3、购买下载后,可加QQ65635204、微信feisng,免费提供技术支持。 4、注意事项: 1)基于.NET框架4.0编写,常规win7、win10一般系统都自带无需安装,XP系统则需安装;安装包详见压缩包dotNetFx40_Full_x86_x64.exe 2)C#编写的DLL,需要注册,解压后放入所需位置,使用管理员权限运行“JQSM2SM4注册COM.bat”即可注册成功,然后即可提供给第三方软件进行使用,如delphi等。
recommend-type

基于Android Studio开发的安卓的通讯录管理app

功能包含:新增联系人、编辑联系人、删除联系人、拨打电话、发送短信等相关操作。 资源包含源码:1、apk安装包 2、演示视频 3、 基本安装环境、4、运行文档 5、以及源代码

最新推荐

recommend-type

数据可视化之利用Python制作词云图

在Python中,制作词云图主要有两种常用的方法:`wordcloud`库和`stylecloud`库。 一、wordcloud方法: 1. 安装:首先需要通过pip安装`wordcloud`库,命令为`pip install wordcloud`。 2. 导入库:在Python脚本中,...
recommend-type

Python简单实现词云图代码及步骤解析

在Python编程中,生成词云图是一种常见的数据可视化方法,尤其在文本分析和自然语言处理领域,它能够直观地展示出文本中各个词汇出现的频率。本教程将详细讲解如何利用Python简单实现词云图,并提供相关的代码示例。...
recommend-type

Python实现Wordcloud生成词云图的示例

主要介绍了Python实现Wordcloud生成词云图的示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

VIENNA维也纳拓扑三相整流Simulink仿真:电压电流双闭环控制策略,电压外环PI控制,电流内环Bang-Bang滞环控制实现稳压输出至600V,附参考资料,VIENNA维也纳拓扑,三相整流si

VIENNA维也纳拓扑三相整流Simulink仿真:电压电流双闭环控制策略,电压外环PI控制,电流内环Bang-Bang滞环控制实现稳压输出至600V,附参考资料,VIENNA维也纳拓扑,三相整流simulink仿真:采用电压电流双闭环控制,电压外环采用PI控制,电流内环采用bang bang滞环控制。 整流电压稳定在600V 有相关参考资料 ,关键词:Vienna维也纳拓扑;三相整流;Simulink仿真;电压电流双闭环控制;PI控制;bang bang滞环控制;整流电压稳定600V;参考资料,基于双闭环控制策略的Vienna三相整流器Simulink仿真:电压电流双环PI与Bang-Bang滞环控制,实现600V稳定输出参考分析
recommend-type

sina_weibo_crawler-master.zip

sina_weibo_crawler-master.zip
recommend-type

前端基础教程:HTML、CSS、JavaScript动态注册登录相册

在当今的互联网时代,前端开发是构建网站和网页不可或缺的部分。它主要负责网站的视觉效果和用户交互体验。本例的项目文件名为“HTML+CSS+JS注册登录动态相册.rar”,它集中展示了前端开发的三大核心技术:HTML(HyperText Markup Language),CSS(Cascading Style Sheets)和JavaScript。该项目的文件名称列表仅包含一个项——“综合项目”,暗示了该项目是一个集合了前端开发中多个知识点和功能的综合实践。 ### HTML HTML是构建网页内容的骨架,它使用标签(tags)来定义网页的结构和内容。在本项目中,HTML将被用于创建注册、登录表单和动态相册的布局结构。例如,注册页面可能包含以下标签: - `<form>`:用于创建输入表单。 - `<input>`:用于输入框,接收用户输入的文本、密码等。 - `<button>`:用于提交表单或重置表单。 - `<div>`:用于布局分组。 - `<img>`:用于加载图片。 - `<section>`、`<article>`:用于逻辑和内容的分块。 - `<header>`、`<footer>`:用于定义页面头部和尾部。 ### CSS CSS负责网页的样式和外观,通过定义HTML元素的布局、颜色、字体和其他视觉属性来美化网页。在本项目中,CSS将用来设计注册登录界面的视觉效果,以及动态相册中图片的展示方式。使用CSS可能会包括: - 布局样式:如使用`display: flex;`来创建灵活的布局。 - 字体和颜色:设置字体类型、大小、颜色以匹配网站风格。 - 盒模型:定义元素的边距、边框、填充等。 - 响应式设计:确保网站在不同设备和屏幕尺寸上的兼容性。 - 动画效果:使用CSS动画实现平滑的用户交互效果。 ### JavaScript JavaScript为网页提供了动态交互功能。它允许开发者编写脚本来处理用户输入、数据验证以及与后端进行通信。在本项目中,JavaScript将被用在以下方面: - 表单验证:使用JavaScript对用户输入的数据进行实时校验,例如验证邮箱格式、密码强度。 - 动态内容更新:动态加载和更新相册中的图片,可能借助AJAX实现与服务器的数据交互。 - 事件处理:响应用户动作如点击按钮、表单提交等。 - DOM操作:通过JavaScript直接操作文档对象模型(Document Object Model),动态修改网页内容和结构。 ### 正则表达式 正则表达式是一种强大的文本处理工具,经常在JavaScript中用于字符串搜索、替换和验证。在注册登录功能中,正则表达式可以用来: - 验证邮箱:确保输入的邮箱地址符合格式要求。 - 检测密码强度:通过匹配特定模式来确保密码符合安全性要求。 - 提取信息:从文本中提取电话号码、地址等信息。 ### 动态相册 动态相册可能是本项目的亮点,它展示了如何利用前端技术展示和操作图片集合。动态相册的实现可能包括: - 图片轮播:通过定时器或用户操作实现图片的自动或手动轮播。 - 图片上传:允许用户上传图片,并实时展示在页面上。 - 图片缩放和预览:通过鼠标操作放大缩小图片,点击图片可以全屏预览。 ### 综合项目的知识架构 整个“综合项目”围绕HTML、CSS、JavaScript构建了一个完整的用户界面,用户可以从登录、注册开始,到浏览动态相册结束。前端开发者需要对这三个核心的技术有深入的理解和实践经验,才能保证项目既满足功能需求,又拥有良好的用户体验。此外,还需要了解正则表达式在数据校验中的应用,以及一些现代前端开发工具和技术的运用,如jQuery、前端框架(例如React, Vue.js等)、模块打包工具(如Webpack)等。 总的来说,这个项目对初学者而言是一个很好的实践机会,它涵盖了前端开发中的基础和进阶知识点,通过实际操作能够加深对前端技术的理解,并提升解决问题的能力。
recommend-type

Avizo 9.0.0 入门教程:新手快速掌握的10个秘诀

# 摘要 本文全面介绍了Avizo 9.0.0这款先进可视化软件的各个方面。首先概述了软件的基础知识和界面布局,接着深入探讨了数据导入、管理和分析的基本操作。文中详细阐述了图像处理技术,包括图像预处理、增强、分割、特征提取、重建与渲染,并对高级功能如拓扑分析、骨架化、宏命令和脚本自动化进行了介绍。最后,文章还提供了学
recommend-type

用c语言比较多个句子大小并排序

在C语言中,直接比较句子大小通常是不可能的,因为字符串不是基本数据类型,不能直接通过整数比较其长度。但是,你可以通过计算每个句子的字符数组长度来间接地比较它们的“大小”。如果你想对包含句子的结构体数组进行排序,可以使用标准库函数`qsort()`配合自定义的比较函数。 首先,你需要创建一个结构体,比如: ```c typedef struct { char *sentence; int length; // 句子长度 } Sentence; ``` 然后,定义一个比较函数,例如按照长度降序排列: ```c int compare_sentences(const void
recommend-type

2021年HTML项目开发实践

标题和描述中提及的“proyectoweb2021”似乎指向一个以2021年命名的网络项目。由于标题和描述的内容非常有限,并没有提供具体的项目细节,所以难以从中提炼出更详尽的知识点。不过,可以从中推测项目可能是关于开发一个网站,并且与HTML相关。 HTML,全称为超文本标记语言(HyperText Markup Language),是用于构建网页的标准标记语言。HTML的主要功能是定义网页的结构和内容,通过各种标签来标记文本、图片、链接、视频、表单等元素,以此来形成网页的基本框架。HTML文件通常以.html或者.htm为文件扩展名。 根据文件名称“proyectoweb2021-main”,可以推断该压缩包子文件可能包含了网站的主要文件或核心代码。通常,在一个项目中,main通常用来指代主文件或主要入口文件。例如,在网站项目中,main可能指的是包含网站主要布局和功能的核心HTML文件。这个文件可能包含了对其他CSS样式表、JavaScript文件、图片资源以及可能的子HTML文件的引用。 在HTML项目中,以下是一些关键知识点: 1. HTML文档结构:了解一个基本HTML页面的结构,包括<!DOCTYPE html>声明、<html>、<head>、<title>、<body>等基本标签的使用。 2. 元素和标签:掌握各种HTML标签的用法,如标题标签(<h1>到<h6>)、段落标签(<p>)、链接标签(<a>)、图片标签(<img>)、表格标签(<table>)、表单标签(<form>)等。 3. 布局控制:学习如何使用HTML和CSS来控制页面布局,例如使用<div>标签创建区块,利用CSS的盒模型、浮动、定位以及Flexbox或Grid布局系统。 4. 表单设计:理解如何创建交互式表单,包括输入字段(<input>)、文本区域(<textarea>)、复选框(<input type="checkbox">)、单选按钮(<input type="radio">)和提交按钮(<button>或<input type="submit">)等元素的使用。 5. 响应式设计:了解如何让网页在不同设备上均能良好展示,例如通过媒体查询、使用百分比宽度和视口单位,以及适应性图片和媒体。 6. 最佳实践:掌握编写清晰、有组织、可维护的代码的最佳实践,比如使用语义化标签,合理使用注释,保持代码的一致性和可读性。 7. 验证和调试:学习如何使用W3C的HTML验证服务来检查代码的正确性,以及如何调试代码中的常见错误。 8. SEO基础:了解HTML对搜索引擎优化(SEO)的影响,包括使用合适的标题标签、元标签和语义化标记来提高网页在搜索引擎中的排名。 由于提供的信息有限,具体的知识点只能围绕HTML的通用知识和网站开发中常见的元素和实践进行概述。如果该项目包含更详细的描述或代码,那么可能会涉及更具体的知识点,比如项目特定的框架或库(例如Bootstrap、Vue.js、React等)、前端开发中的API使用、数据库交互、服务器端编程等。由于没有更具体的信息,无法进一步深入探讨这些高级主题。
recommend-type

【计算机组成原理深度解析】:华科经典课程的实战指南,助你迅速掌握设计精髓

# 摘要 本文对计算机系统的核心组成进行了深入探讨,包括CPU的设计与优化、存储系统的设计与实现以及输入输出系统与外围设备的工作原理。首先,介绍了CPU的基本结构、工作原理以及性能评估和优化策略。随后,重点分析了内存管理机制、高速缓存原理和磁盘存储系统,特别是固态硬盘技术的优势。最后,通过案例分析,讨论了计算机系统综合设计的方法论、问题诊断与解决以及跨学科视角下的系统集成。本文旨在为