yolov8添加swin
时间: 2023-10-15 22:24:16 浏览: 191
yolov5_transformer:Yolov5带变压器
要在YOLOv8的neck中添加Swin Transformer块,可以参考以下代码示例:
```python
import torch.nn as nn
# 在YOLOv8的neck中引入Swin Transformer块
class YOLOv8(nn.Module):
def __init__(self, num_classes):
super(YOLOv8, self).__init__()
# ...
self.neck = nn.Sequential(
nn.Conv2d(1280, 256, kernel_size=1, stride=1, padding=0),
SwinTransformerBlock(dim=256, num_heads=8, window_size=14), # 添加Swin Transformer块
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0),
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0),
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
)
self.num_classes = num_classes
# ...
def forward(self, x):
# ...
x = self.neck(x)
# ...
return x
```
通过在YOLOv8的neck中引入Swin Transformer块,可以融合多尺度特征,有助于模型更好地理解不同大小的目标并提升检测性能。将Swin Transformer V2网络结构与YOLOv8相结合,可以在backbone和neck中引入Swin Transformer块,从而有效提升目标检测的精度和mAP。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [【YOLOv8改进】Swin Transformer V2网络结构与YOLOv8相结合](https://blog.csdn.net/crasher123/article/details/132132967)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文