代码生成,用torch写出yolov7添加的swin transformer检测头代码
时间: 2023-04-03 17:04:21 浏览: 121
以下是我对您的问题的回答:
对于您的问题,我可以回答。以下是用torch写出yolov7添加的swin transformer检测头代码的示例:
```python
import torch
import torch.nn as nn
from models.common import Conv, DWConv
class YOLOv7(nn.Module):
def __init__(self, num_classes=80, width_mult=0.5, hr=False):
super(YOLOv7, self).__init__()
self.num_classes = num_classes
self.width_mult = width_mult
self.hr = hr
# Backbone
self.backbone = nn.Sequential(
Conv(3, int(64 * width_mult), 3, 2),
DWConv(int(64 * width_mult), int(128 * width_mult), 3, 2),
DWConv(int(128 * width_mult), int(256 * width_mult), 3, 2),
DWConv(int(256 * width_mult), int(512 * width_mult), 3, 2),
DWConv(int(512 * width_mult), int(1024 * width_mult), 3, 2),
DWConv(int(1024 * width_mult), int(1024 * width_mult), 3, 2),
)
# Neck
self.neck = nn.Sequential(
Conv(int(1024 * width_mult), int(512 * width_mult), 1),
nn.Upsample(scale_factor=2, mode='nearest'),
Conv(int(1024 * width_mult), int(512 * width_mult), 1),
Conv(int(512 * width_mult), int(1024 * width_mult), 3),
Conv(int(1024 * width_mult), int(512 * width_mult), 1),
Conv(int(512 * width_mult), int(1024 * width_mult), 3),
Conv(int(1024 * width_mult), int(512 * width_mult), 1),
Conv(int(512 * width_mult), int(1024 * width_mult), 3),
)
# Head
self.head = nn.Sequential(
Conv(int(1024 * width_mult), int(512 * width_mult), 1),
Conv(int(512 * width_mult), int(1024 * width_mult), 3),
Conv(int(1024 * width_mult), int(512 * width_mult), 1),
Conv(int(512 * width_mult), int(1024 * width_mult), 3),
Conv(int(1024 * width_mult), int(512 * width_mult), 1),
nn.Conv2d(int(
阅读全文