'KMeans' object has no attribute 'centroids_'
时间: 2024-01-18 15:04:33 浏览: 130
这个错误是因为你尝试访问一个KMeans对象的属性'centroids_',但该属性在sklearn库的KMeans类中不存在。在sklearn中,KMeans类的聚类中心属性被命名为'cluster_centers_'。你可以使用'cluster_centers_'属性来访问聚类中心。下面是一个示例代码:
```python
from sklearn.cluster import KMeans
# 创建KMeans对象
kmeans = KMeans(n_clusters=3)
# 训练模型
kmeans.fit(data)
# 获取聚类中心
centroids = kmeans.cluster_centers_
```
请注意,你需要将上述代码中的"data"替换为你自己的数据。此外,确保你已经正确安装了sklearn库。
相关问题
'KMeans' object has no attribute '_estimate_weighted_centroids'
对不起,看起来你在引用的是`sklearn`库中的`KMeans`类,但在最新版的`scikit-learn`(v1.0及以上)中,`_estimate_weighted_centroids`属性已经被移除,取而代之的是公开的方法`partial_fit`,用于在已有训练数据的基础上更新模型。如果你想要在找到合适的簇后更新中心点,你应该使用`update`或`fit_predict`方法,而不是直接访问私有属性。
以下是修正后的代码段:
```python
kmeans = KMeans(n_clusters=3, random_state=15, init='k-means++')
while True:
kmeans.partial_fit(X) # 或者使用 fit_predict 如果你想同时得到聚类标签
cluster_labels = kmeans.labels_
# ... (继续剩下的代码,包括检查簇大小和可能的合并)
# 更新KMeans模型的簇中心
kmeans.cluster_centers_ = kmeans.cluster_centers_
```
在这里,`partial_fit`会在每次迭代时对新来的数据进行调整,而`cluster_centers_`将自动更新为新的聚类中心。记得在`break`之前处理完簇大小检查和可能的合并操作。
kmeans object has no attribute labels
The error message "kmeans object has no attribute labels" typically occurs when you try to access the "labels" attribute of a KMeans object in scikit-learn, but the attribute does not exist.
In scikit-learn, the KMeans algorithm does not have a "labels" attribute by default. Instead, you can use the "predict" method to assign labels to new data points based on a trained KMeans model. For example:
```
from sklearn.cluster import KMeans
# create KMeans object and fit it to data
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)
# assign labels to new data points
labels = kmeans.predict(new_data)
```
If you need to access the cluster labels assigned to the training data by KMeans, you can use the "labels_" attribute instead:
```
# get cluster labels assigned to training data
train_labels = kmeans.labels_
```
Note that the "labels_" attribute only exists after the KMeans object has been fit to data.
阅读全文