import numpy as np import pandas as pd from sklearn.svm import SVC from sklearn.datasets import load_iris data = load_iris() X = data['data'] y = data['target'] X = X[y != 2, 0:2] y = y[y != 2] X -= np.mean(X, axis=0) X /= np.std(X, axis=0, ddof=1) m = len(X) data = int(0.8 * m) X_train, X_test = np.split(X, [data]) y_train, y_test = np.split(y, [data]) model_svm = SVC(C=1.0, kernel='linear') model_svm.fit(X_train, y_train) Accuracy = model_svm.score(X_test, y_test) print('Linear Accuracy = ', Accuracy) X_test_h = model_svm.predict(X_test)

时间: 2024-04-17 15:29:02 浏览: 17
这段代码是一个简单的示例,展示了如何使用支持向量机(SVM)对鸢尾花数据集进行分类。 首先,导入所需的库:numpy、pandas、SVC(来自sklearn.svm)以及load_iris(来自sklearn.datasets)。 然后,加载鸢尾花数据集并将其分为特征矩阵X和目标向量y。在这个例子中,我们只选择了前两个特征,并将目标类别2过滤掉。 接下来,对特征矩阵进行标准化处理,将每个特征的均值减去,并除以标准差。 然后,计算样本数量m,并将80%的数据用作训练集,剩余的20%用作测试集。 创建一个SVC模型,使用线性核函数,并将其拟合到训练集上。 计算模型在测试集上的准确率,并打印出来。 最后,使用训练好的模型对测试集进行预测,并将结果保存在X_test_h中。
相关问题

在Python中想运行from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit,StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn import svm from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_auc_score import math import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random怎么操作

要在Python中运行这些代码,你需要确保已经安装了相应的包。大多数包都可以使用`pip`进行安装。 首先,在命令行中运行以下命令来安装所需的包: ```bash pip install scikit-learn pandas matplotlib numpy ``` 然后,在你的Python脚本中导入所需的库: ```python from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit, StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random ``` 请确保在运行这些代码之前,已经安装了所需的Python库。如果遇到任何问题,请确保已正确安装这些库,并且版本与代码兼容。

import numpy as np import pandas as pd from sklearn.svm import SVC from sklearn.datasets import load_iris data = load_iris() X = data['data'] y = data['target'] X = X[y != 2, 0:2] y = y[y != 2] X -= np.mean(X, axis=0) X /= np.std(X, axis=0, ddof=1) m = len(X) data = int(0.8 * m) X_train, X_test = np.split(X, [data]) y_train, y_test = np.split(y, [data]) model_svm = SVC(C=1.0, kernel='linear') model_svm.fit(X_train, y_train) Accuracy = model_svm.score(X_test, y_test) print('Linear Accuracy = ', Accuracy) X_test_h = model_svm.predict(X_test) 将每一段的代码含义解释出来

这段代码使用了Scikit-learn库来训练一个支持向量机(SVM)模型并评估其准确性。下面是每段代码的含义解释: 1. `import numpy as np`:导入NumPy库,用于处理数组和数值计算。 2. `import pandas as pd`:导入Pandas库,用于数据处理和分析。 3. `from sklearn.svm import SVC`:从Scikit-learn库中导入支持向量机模型。 4. `from sklearn.datasets import load_iris`:从Scikit-learn库中导入鸢尾花数据集。 5. `data = load_iris()`:加载鸢尾花数据集。 6. `X = data['data']`:将数据集的特征存储在X变量中。 7. `y = data['target']`:将数据集的目标变量存储在y变量中。 8. `X = X[y != 2, 0:2]`:选择特征矩阵X中类别不为2的样本,并只保留前两个特征。 9. `y = y[y != 2]`:选择目标变量y中类别不为2的样本。 10. `X -= np.mean(X, axis=0)`:对特征矩阵X进行均值归一化,即减去每个特征的均值。 11. `X /= np.std(X, axis=0, ddof=1)`:对特征矩阵X进行标准差归一化,即除以每个特征的标准差。 12. `m = len(X)`:计算样本数量m。 13. `data = int(0.8 * m)`:计算训练集的大小,这里选择80%的样本作为训练集。 14. `X_train, X_test = np.split(X, [data])`:将特征矩阵X按照给定索引位置data进行分割,分成训练集X_train和测试集X_test。 15. `y_train, y_test = np.split(y, [data])`:将目标变量y按照给定索引位置data进行分割,分成训练集y_train和测试集y_test。 16. `model_svm = SVC(C=1.0, kernel='linear')`:创建一个线性核的支持向量机模型,并设置正则化参数C为1.0。 17. `model_svm.fit(X_train, y_train)`:使用训练集训练支持向量机模型。 18. `Accuracy = model_svm.score(X_test, y_test)`:计算测试集上的准确性得分。 19. `print('Linear Accuracy = ', Accuracy)`:打印线性核支持向量机模型在测试集上的准确性得分。 20. `X_test_h = model_svm.predict(X_test)`:使用训练好的模型对测试集进行预测。

相关推荐

import streamlit as st import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier import streamlit_echarts as st_echarts from sklearn.metrics import accuracy_score,confusion_matrix,f1_score def pivot_bar(data): option = { "xAxis":{ "type":"category", "data":data.index.tolist() }, "legend":{}, "yAxis":{ "type":"value" }, "series":[ ] }; for i in data.columns: option["series"].append({"data":data[i].tolist(),"name":i,"type":"bar"}) return option st.markdown("mode pracitce") st.sidebar.markdown("mode pracitce") df=pd.read_csv(r"D:\课程数据\old.csv") st.table(df.head()) with st.form("form"): index_val = st.multiselect("choose index",df.columns,["Response"]) agg_fuc = st.selectbox("choose a way",[np.mean,len,np.sum]) submitted1 = st.form_submit_button("Submit") if submitted1: z=df.pivot_table(index=index_val,aggfunc = agg_fuc) st.table(z) st_echarts(pivot_bar(z)) df_copy = df.copy() df_copy.drop(axis=1,columns="Name",inplace=True) df_copy["Response"]=df_copy["Response"].map({"no":0,"yes":1}) df_copy=pd.get_dummies(df_copy,columns=["Gender","Area","Email","Mobile"]) st.table(df_copy.head()) y=df_copy["Response"].values x=df_copy.drop(axis=1,columns="Response").values X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2) with st.form("my_form"): estimators0 = st.slider("estimators",0,100,10) max_depth0 = st.slider("max_depth",1,10,2) submitted = st.form_submit_button("Submit") if "model" not in st.session_state: st.session_state.model = RandomForestClassifier(n_estimators=estimators0,max_depth=max_depth0, random_state=1234) st.session_state.model.fit(X_train, y_train) y_pred = st.session_state.model.predict(X_test) st.table(confusion_matrix(y_test, y_pred)) st.write(f1_score(y_test, y_pred)) if st.button("save model"): pkl_filename = "D:\\pickle_model.pkl" with open(pkl_filename, 'wb') as file: pickle.dump(st.session_state.model, file) 会出什么错误

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

MobaXterm 工具

MobaXterm 工具
recommend-type

grpcio-1.48.0-cp37-cp37m-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

扁平风格PPT可修改ppt下载(11).zip

扁平风格PPT可修改ppt下载(11).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。