用verilog写spi flash的框架思路

时间: 2023-08-10 17:06:55 浏览: 102
你可以使用Verilog语言编写SPI Flash的框架。下面是基本的思路: 1. 首先,你需要定义SPI Flash的信号线和寄存器。 2. 定义SPI Flash的输入和输出端口。输入端口包括时钟信号、复位信号、片选信号以及数据输入信号。输出端口为数据输出信号。 3. 定义寄存器,用于存储SPI Flash的配置信息和状态信息。 4. 在主模块中实现SPI Flash的控制逻辑。这包括根据输入的指令和数据进行相应的操作,如读取、写入、擦除等。 5. 在时钟上升沿进行数据传输。根据SPI Flash的通信协议,发送指令、地址和数据,并接收返回的数据。 6. 根据SPI Flash的规格书,实现相应的操作序列和时序要求。 7. 在需要的时候,使用状态机或有限状态机来管理SPI Flash的状态转换。 8. 可以使用仿真工具进行验证,并在实际硬件平台上进行验证和调试。 以上是一个基本的框架思路,你可以根据具体的需求和SPI Flash的规格书来进行详细的设计和实现。
相关问题

Verilog 通过spi读写flash代码怎么写?

以下是一个简单的 Verilog 代码示例,用于通过 SPI 总线读写 Flash 存储器: ```verilog module spi_flash ( input wire clk, input wire rst, input wire [7:0] spi_data_in, output wire [7:0] spi_data_out, input wire spi_sclk, input wire spi_ss, input wire spi_mosi, output wire spi_miso, input wire spi_wp, input wire spi_hold, input wire [23:0] spi_addr, input wire spi_wren, input wire spi_rden, output wire spi_busy, output reg [15:0] spi_status ); // 定义 Flash 存储器的指令 parameter CMD_WREN = 8'h06; parameter CMD_WRDI = 8'h04; parameter CMD_RDSR = 8'h05; parameter CMD_WRSR = 8'h01; parameter CMD_READ = 8'h03; parameter CMD_FAST_READ = 8'h0B; parameter CMD_PP = 8'h02; parameter CMD_SE = 8'h20; parameter CMD_BE = 8'h52; parameter CMD_CE = 8'h60; parameter CMD_DP = 8'hB9; parameter CMD_RES = 8'hAB; parameter CMD_RDID = 8'h9F; // 定义 Flash 存储器的状态寄存器 reg [7:0] flash_sr; // 定义 SPI 总线的状态机状态 reg [3:0] spi_fsm_state; // 定义存储器的地址、数据和指令 reg [23:0] mem_addr; reg [7:0] mem_data; reg [7:0] mem_cmd; // 定义 SPI 总线的接收和发送缓冲区 reg [7:0] spi_rx_buf; reg [7:0] spi_tx_buf; // 定义计数器和标志位 reg [7:0] cnt; reg spi_busy_flag; // 定义时序参数 parameter SCK_HALF_PERIOD = 10; // SPI 时钟的半个周期的时间 // 初始化状态机状态和标志位 initial begin spi_fsm_state = 4'h0; spi_busy_flag = 1'b0; end // 状态机 always @(posedge clk) begin if (rst) begin spi_fsm_state <= 4'h0; spi_busy_flag <= 1'b0; end else begin case (spi_fsm_state) 4'h0: begin // 空闲状态 spi_busy <= 1'b0; spi_miso <= 1'b1; if (spi_ss == 1'b0) begin // SPI 片选信号被拉低,启动读写操作 spi_fsm_state <= 4'h1; spi_tx_buf <= mem_cmd; end end 4'h1: begin // 等待 Flash 存储器准备好 spi_busy <= 1'b1; spi_miso <= 1'b1; spi_tx_buf <= mem_addr[15:8]; spi_fsm_state <= 4'h2; end 4'h2: begin // 发送地址的高位 spi_busy <= 1'b1; spi_miso <= 1'b1; spi_tx_buf <= mem_addr[7:0]; spi_fsm_state <= 4'h3; end 4'h3: begin // 发送地址的低位 spi_busy <= 1'b1; spi_miso <= 1'b1; spi_tx_buf <= mem_data; spi_fsm_state <= 4'h4; end 4'h4: begin // 发送数据 spi_busy <= 1'b1; spi_miso <= 1'b1; spi_rx_buf <= spi_data_in; spi_fsm_state <= 4'h5; end 4'h5: begin // 接收数据 spi_busy <= 1'b1; spi_miso <= 1'b0; spi_tx_buf <= mem_data; spi_fsm_state <= 4'h6; end 4'h6: begin // 发送数据 spi_busy <= 1'b1; spi_miso <= 1'b1; spi_rx_buf <= spi_data_in; spi_fsm_state <= 4'h7; end 4'h7: begin // 接收数据 spi_busy <= 1'b1; spi_miso <= 1'b0; spi_tx_buf <= 8'hFF; spi_fsm_state <= 4'h8; end 4'h8: begin // 等待 Flash 存储器完成操作 spi_busy <= 1'b1; spi_miso <= 1'b1; spi_rx_buf <= spi_data_in; spi_fsm_state <= 4'h9; end 4'h9: begin // 判断是否需要发送下一个读写操作 spi_busy <= 1'b0; spi_miso <= 1'b1; spi_rx_buf <= spi_data_in; if (spi_ss == 1'b1) begin // SPI 片选信号被拉高,读写操作结束 spi_fsm_state <= 4'h0; spi_busy_flag <= 1'b0; end else begin // SPI 片选信号仍为低电平,发送下一个读写操作 spi_fsm_state <= 4'h1; mem_cmd <= spi_rx_buf; mem_addr <= {spi_rx_buf, spi_data_in}; mem_data <= spi_data_in; end end default: begin // 异常状态 spi_fsm_state <= 4'h0; spi_busy_flag <= 1'b0; end endcase end end // 定义状态机的计数器 always @(posedge clk) begin if (rst) begin cnt <= 8'h0; end else begin if (spi_fsm_state == 4'h1 || spi_fsm_state == 4'h8) begin // 等待 Flash 存储器准备或完成 if (cnt < 8'hFF) begin cnt <= cnt + 1; end else begin spi_fsm_state <= 4'h0; spi_busy_flag <= 1'b0; cnt <= 8'h0; end end else begin cnt <= 8'h0; end end end // 定义状态机的状态输出 always @(posedge clk) begin if (rst) begin spi_status <= 16'h0000; end else begin case (spi_fsm_state) 4'h0: begin // 空闲状态 spi_status <= 16'h0000; end 4'h1: begin // 等待 Flash 存储器准备好 spi_status <= 16'h0001; end 4'h2: begin // 发送地址的高位 spi_status <= 16'h0002; end 4'h3: begin // 发送地址的低位 spi_status <= 16'h0003; end 4'h4: begin // 发送数据 spi_status <= 16'h0004; end 4'h5: begin // 接收数据 spi_status <= 16'h0005; end 4'h6: begin // 发送数据 spi_status <= 16'h0006; end 4'h7: begin // 接收数据 spi_status <= 16'h0007; end 4'h8: begin // 等待 Flash 存储器完成操作 spi_status <= 16'h0008; end 4'h9: begin // 判断是否需要发送下一个读写操作 spi_status <= 16'h0009; end default: begin // 异常状态 spi_status <= 16'hFFFF; end endcase end end endmodule ``` 这个代码示例中,我们使用 Verilog 实现了一个简单的 SPI 总线接口,用于读写 Flash 存储器。在这个代码中,我们定义了 Flash 存储器的指令,并通过状态机实现了读写操作。同时,我们还定义了计数器和标志位,用于判断 Flash 存储器是否准备好,以及在读写操作完成后是否需要发送下一个读写操作。

用 verilog 写 spi

下面是一个简单的 Verilog 代码示例,用于实现 SPI(串行外围接口): ```verilog module spi ( input clk, input rst, input [7:0] data_in, output [7:0] data_out, output cs_n, output sclk, output mosi, input miso ); reg [7:0] shift_reg; reg [2:0] state; parameter IDLE = 3'b000; parameter START = 3'b001; parameter TRANSFER = 3'b010; parameter END = 3'b011; assign data_out = shift_reg; always @(posedge clk or posedge rst) begin if (rst) begin shift_reg <= 8'b0; state <= IDLE; cs_n <= 1'b1; sclk <= 1'b0; mosi <= 1'b0; end else begin case (state) IDLE: begin shift_reg <= 8'b0; if (data_in != 8'hFF) begin state <= START; end end START: begin cs_n <= 1'b0; mosi <= 1'b1; sclk <= 1'b1; state <= TRANSFER; end TRANSFER: begin mosi <= shift_reg[7]; sclk <= ~sclk; shift_reg <= { shift_reg[6:0], miso }; if (sclk) begin state <= END; end end END: begin sclk <= 1'b0; if (shift_reg[0] == 1'b1) begin state <= IDLE; cs_n <= 1'b1; end else begin state <= TRANSFER; end end endcase end end endmodule ``` 这个模块有以下输入和输出: - 输入: - `clk`:时钟输入 - `rst`:复位输入 - `data_in`:8 位数据输入 - `miso`:主设备输入,用于接收从设备发送的数据 - 输出: - `data_out`:8 位数据输出 - `cs_n`:从设备片选输出 - `sclk`:时钟输出 - `mosi`:主设备输出,用于发送数据到从设备 这个模块的状态机有四个状态: - `IDLE`:空闲状态 - `START`:开始传输状态 - `TRANSFER`:传输状态 - `END`:结束传输状态 在空闲状态下,模块等待主设备将数据写入 `data_in` 寄存器中。如果 `data_in` 不等于 `8'hFF`(即主设备写入了有效数据),则进入开始传输状态。 在开始传输状态下,模块拉低从设备的片选信号,设置主设备的 MOSI 信号为高电平,设置 SCLK 信号为高电平,进入传输状态。 在传输状态下,模块从 `shift_reg` 中取出最高位,将其设置到 MOSI 信号中,翻转 SCLK 信号的电平,将 MISO 信号中的数据放入 `shift_reg` 的最低位,如果 SCLK 信号变为高电平,则进入结束传输状态。 在结束传输状态下,模块将 SCLK 信号设置为低电平,如果 `shift_reg` 的最低位是 1,则传输结束,进入空闲状态,拉高从设备的片选信号,否则继续进入传输状态。

相关推荐

最新推荐

recommend-type

xilinx SPI FLASH 的烧写流程

Xilinx SPI FLASH 的烧写流程是指将设计好的数字电路烧写到 Xilinx 的 SPI FLASH 芯片中,以便在实际应用中使用。下面将详细介绍 Xilinx SPI FLASH 的烧写流程。 Step 1: 打开要烧写的工程 在 ISE 中打开要烧写的...
recommend-type

基于白冠鸡优化算法COOT-Kmean-Transformer-GRU实现数据回归预测算法研究Matlab代码.rar

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 5.作者介绍:某大厂资深算法工程师,从事Matlab算法仿真工作10年;擅长智能优化算法、神经网络预测、信号处理、元胞自动机等多种领域的算法仿真实验,更多仿真源码、数据集定制私信+。 替换数据可以直接使用,注释清楚,适合新手
recommend-type

源代码-wap站长论坛 手机建站程序.zip

源代码-wap站长论坛 手机建站程序.zip
recommend-type

【SCI1区】Matlab实现鱼鹰优化算法OOA-Transformer-GRU故障诊断算法研究.rar

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 5.作者介绍:某大厂资深算法工程师,从事Matlab算法仿真工作10年;擅长智能优化算法、神经网络预测、信号处理、元胞自动机等多种领域的算法仿真实验,更多仿真源码、数据集定制私信+。 替换数据可以直接使用,注释清楚,适合新手
recommend-type

【创新发文无忧】Matlab实现侏儒猫鼬优化算法DMO-Kmean-Transformer-GRU故障诊断算法研究.rar

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 5.作者介绍:某大厂资深算法工程师,从事Matlab算法仿真工作10年;擅长智能优化算法、神经网络预测、信号处理、元胞自动机等多种领域的算法仿真实验,更多仿真源码、数据集定制私信+。 替换数据可以直接使用,注释清楚,适合新手
recommend-type

计算机系统基石:深度解析与优化秘籍

深入理解计算机系统(原书第2版)是一本备受推崇的计算机科学教材,由卡耐基梅隆大学计算机学院院长,IEEE和ACM双院院士推荐,被全球超过80所顶级大学选作计算机专业教材。该书被誉为“价值超过等重量黄金”的无价资源,其内容涵盖了计算机系统的核心概念,旨在帮助读者从底层操作和体系结构的角度全面掌握计算机工作原理。 本书的特点在于其起点低但覆盖广泛,特别适合大三或大四的本科生,以及已经完成基础课程如组成原理和体系结构的学习者。它不仅提供了对计算机原理、汇编语言和C语言的深入理解,还包含了诸如数字表示错误、代码优化、处理器和存储器系统、编译器的工作机制、安全漏洞预防、链接错误处理以及Unix系统编程等内容,这些都是提升程序员技能和理解计算机系统内部运作的关键。 通过阅读这本书,读者不仅能掌握系统组件的基本工作原理,还能学习到实用的编程技巧,如避免数字表示错误、优化代码以适应现代硬件、理解和利用过程调用、防止缓冲区溢出带来的安全问题,以及解决链接时的常见问题。这些知识对于提升程序的正确性和性能至关重要,使读者具备分析和解决问题的能力,从而在计算机行业中成为具有深厚技术实力的专家。 《深入理解计算机系统(原书第2版)》是一本既能满足理论学习需求,又能提供实践经验指导的经典之作,无论是对在校学生还是职业程序员,都是提升计算机系统知识水平的理想读物。如果你希望深入探究计算机系统的世界,这本书将是你探索之旅的重要伴侣。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

PHP数据库操作实战:手把手教你掌握数据库操作精髓,提升开发效率

![PHP数据库操作实战:手把手教你掌握数据库操作精髓,提升开发效率](https://img-blog.csdn.net/20180928141511915?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MzE0NzU5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 1. PHP数据库操作基础** PHP数据库操作是使用PHP语言与数据库交互的基础,它允许开发者存储、检索和管理数据。本章将介绍PHP数据库操作的基本概念和操作,为后续章节奠定基础。
recommend-type

vue-worker

Vue Worker是一种利用Web Workers技术的 Vue.js 插件,它允许你在浏览器的后台线程中运行JavaScript代码,而不影响主线程的性能。Vue Worker通常用于处理计算密集型任务、异步I/O操作(如文件读取、网络请求等),或者是那些需要长时间运行但不需要立即响应的任务。 通过Vue Worker,你可以创建一个新的Worker实例,并将Vue实例的数据作为消息发送给它。Worker可以在后台执行这些数据相关的操作,然后返回结果到主页面上,实现了真正的非阻塞用户体验。 Vue Worker插件提供了一个简单的API,让你能够轻松地在Vue组件中管理worker实例
recommend-type

《ThinkingInJava》中文版:经典Java学习宝典

《Thinking in Java》中文版是由知名编程作家Bruce Eckel所著的经典之作,这本书被广泛认为是学习Java编程的必读书籍。作为一本面向对象的编程教程,它不仅适合初学者,也对有一定经验的开发者具有启发性。本书的核心目标不是传授Java平台特定的理论,而是教授Java语言本身,着重于其基本语法、高级特性和最佳实践。 在内容上,《Thinking in Java》涵盖了Java 1.2时期的大部分关键特性,包括Swing GUI框架和新集合类库。作者通过清晰的讲解和大量的代码示例,帮助读者深入理解诸如网络编程、多线程处理、虚拟机性能优化以及与其他非Java代码交互等高级概念。书中提供了320个实用的Java程序,超过15000行代码,这些都是理解和掌握Java语言的宝贵资源。 作为一本获奖作品,Thinking in Java曾荣获1995年的Software Development Jolt Award最佳书籍大奖,体现了其在业界的高度认可。Bruce Eckel不仅是一位经验丰富的编程专家,还是C++领域的权威,他拥有20年的编程经历,曾在世界各地教授对象编程,包括C++和Java。他的著作还包括Thinking in C++,该书同样广受好评。 作者不仅是一位技术导师,还是一位教育家,他善于用易于理解的方式阐述复杂的编程概念,使读者能够领略到编程中的“智慧”。与其他Java教材相比,《Thinking in Java》以其成熟、连贯、严谨的风格,赢得了读者的一致赞誉,被誉为最全面且实例恰当的编程指南,是学习Java过程中不可或缺的参考资料。 此外,本书还提供了配套的CD,包含15小时的语音授课,以及可以从Bruce Eckel的官方网站www.BruceEckel.com免费获取的源码和电子版更新,确保读者能够跟随最新的技术发展保持同步。无论你是Java新手还是进阶者,《Thinking in Java》都是一次深入探索Java世界的重要旅程。