悬臂梁matlab程序
时间: 2023-08-28 12:18:04 浏览: 207
当然,我可以为您提供一个简单的悬臂梁的 Matlab 程序。以下是一个示例程序:
```matlab
% 定义输入参数
L = 1; % 梁的长度(m)
E = 1e9; % 弹性模量(Pa)
I = 1e-4; % 惯性矩(m^4)
w = 1000; % 均布载荷(N/m)
% 计算反力和弯矩
A = [1, 0, 0, 0; ...
0, 1, 0, L^3; ...
1, L/2, L^2/4, L^3/6; ...
0, 1, L, L^2];
b = [0; -w*L^4/24; -w*L^2/8; -w*L/6];
x = A\b;
R1 = x(1);
M1 = x(2);
R2 = x(3);
M2 = x(4);
% 绘制弯矩图
x = linspace(0, L, 100);
y = ((-w*x.^2)/2 + R1*x + M1).*(x<=L/2) + ((w*x.^2)/2 - R2*x + M2).*(x>L/2);
figure;
plot(x, y);
xlabel('位置(m)');
相关问题
有限元分析悬臂梁matlab程序
以下是一个简单的有限元分析悬臂梁的Matlab程序:
```matlab
% 定义参数
L = 1; % 梁的长度
h = 0.1; % 梁的高度
b = 0.05; % 梁的宽度
E = 2e11; % 弹性模量
nu = 0.3; % 泊松比
rho = 7800; % 密度
g = 9.81; % 重力加速度
% 定义节点和单元数
n_nodes = 11;
n_elems = n_nodes - 1;
% 定义节点坐标
x = linspace(0, L, n_nodes);
y = zeros(1, n_nodes);
% 定义单元节点
elems = [1 2; 2 3; 3 4; 4 5; 5 6; 6 7; 7 8; 8 9; 9 10; 10 11];
% 定义材料矩阵
D = E/(1-nu^2)*[1 nu 0; nu 1 0; 0 0 (1-nu)/2];
% 定义初始应变矩阵
epsilon_0 = zeros(3, n_elems);
% 定义初始速度和加速度矩阵
v_0 = zeros(3, n_nodes);
a_0 = zeros(3, n_nodes);
% 定义质量矩阵和刚度矩阵
M = zeros(3*n_nodes, 3*n_nodes);
K = zeros(3*n_nodes, 3*n_nodes);
% 计算质量矩阵和刚度矩阵
for i = 1:n_elems
% 获取单元节点
n1 = elems(i, 1);
n2 = elems(i, 2);
% 计算单元长度和角度
L_e = norm([x(n2)-x(n1) y(n2)-y(n1)]);
theta_e = atan2(y(n2)-y(n1), x(n2)-x(n1));
% 计算单元转换矩阵
T_e = [cos(theta_e) sin(theta_e) 0 0 0 0;
-sin(theta_e) cos(theta_e) 0 0 0 0;
0 0 1 0 0 0;
0 0 0 cos(theta_e) sin(theta_e) 0;
0 0 0 -sin(theta_e) cos(theta_e) 0;
0 0 0 0 0 1];
% 计算单元质量矩阵和刚度矩阵
Me = rho*h*b*L_e/420*[156 22*L_e 54 -13*L_e;
22*L_e 4*L_e^2 13*L_e -3*L_e^2;
54 13*L_e 156 -22*L_e;
-13*L_e -3*L_e^2 -22*L_e 4*L_e^2];
Ke = h*b/(L_e*(1-nu^2))*[1/3*E 1/6*E*L_e -1/3*E 1/6*E*L_e;
1/6*E*L_e 1/3*E*L_e^2 -1/6*E*L_e -1/3*E*L_e^2;
-1/3*E -1/6*E*L_e 1/3*E -1/6*E*L_e;
1/6*E*L_e -1/3*E*L_e^2 -1/6*E*L_e 1/3*E*L_e^2];
% 转换到全局坐标系
Me = T_e' * Me * T_e;
Ke = T_e' * Ke * T_e;
% 将单元质量矩阵和刚度矩阵加入全局质量矩阵和刚度矩阵
M(3*n1-2:3*n1, 3*n1-2:3*n1) = M(3*n1-2:3*n1, 3*n1-2:3*n1) + Me(1:3, 1:3);
M(3*n1-2:3*n1, 3*n2-2:3*n2) = M(3*n1-2:3*n1, 3*n2-2:3*n2) + Me(1:3, 4:6);
M(3*n2-2:3*n2, 3*n1-2:3*n1) = M(3*n2-2:3*n2, 3*n1-2:3*n1) + Me(4:6, 1:3);
M(3*n2-2:3*n2, 3*n2-2:3*n2) = M(3*n2-2:3*n2, 3*n2-2:3*n2) + Me(4:6, 4:6);
K(3*n1-2:3*n1, 3*n1-2:3*n1) = K(3*n1-2:3*n1, 3*n1-2:3*n1) + Ke(1:3, 1:3);
K(3*n1-2:3*n1, 3*n2-2:3*n2) = K(3*n1-2:3*n1, 3*n2-2:3*n2) + Ke(1:3, 4:6);
K(3*n2-2:3*n2, 3*n1-2:3*n1) = K(3*n2-2:3*n2, 3*n1-2:3*n1) + Ke(4:6, 1:3);
K(3*n2-2:3*n2, 3*n2-2:3*n2) = K(3*n2-2:3*n2, 3*n2-2:3*n2) + Ke(4:6, 4:6);
end
% 定义边界条件
bc_nodes = [1];
bc_dofs = [1 2 3];
% 将边界条件应用到质量矩阵和刚度矩阵上
for i = 1:length(bc_nodes)
node = bc_nodes(i);
dofs = bc_dofs;
M(3*node-dofs, :) = 0;
M(:, 3*node-dofs) = 0;
M(3*node-dofs, 3*node-dofs) = eye(length(dofs));
K(3*node-dofs, :) = 0;
K(:, 3*node-dofs) = 0;
K(3*node-dofs, 3*node-dofs) = eye(length(dofs));
end
% 定义外力矩阵
F = zeros(3*n_nodes, 1);
F(3*n_nodes-1) = -1000;
% 求解加速度矩阵
a = inv(M) * (F - K * v_0(:));
% 求解位移矩阵
v = v_0(:) + a_0(:) + a(:);
% 输出结果
disp(v);
% 绘制梁的形状
figure;
hold on;
for i = 1:n_elems
n1 = elems(i, 1);
n2 = elems(i, 2);
plot([x(n1) x(n2)], [y(n1) y(n2)], 'k');
end
axis equal;
```
该程序定义了一个悬臂梁的几何和材料参数,然后使用有限元方法计算了梁的位移响应。程序输出了梁的位移矩阵,并绘制了梁的形状。
有限元悬臂梁matlab,悬臂梁MATLAB有限元算例注释.doc
对于有限元悬臂梁的MATLAB算例,以下是注释说明:
1. 定义悬臂梁的几何和材料属性,例如长度、截面积、杨氏模量等。
2. 将悬臂梁划分为若干个单元,每个单元内部的应变和应力分布近似为线性分布,可以通过线性方程组求解得到。
3. 建立刚度矩阵和力矢量,通过单元刚度矩阵的组合得到总刚度矩阵和总力矢量。
4. 根据边界条件,对总刚度矩阵和总力矢量进行修正。
5. 求解未知节点的位移,得到节点的应变和应力分布。
6. 计算悬臂梁的挠度和应力分布,绘制相应的图像。
以上是有限元悬臂梁MATLAB算例的基本流程和说明,具体的代码实现可以参考相关的文献和资料。
阅读全文