emgucv Image<PixelType>与mat 的互相转换

时间: 2024-12-11 07:36:53 浏览: 11
在Emgu CV中,`Image<PixelType>`是一种泛型图像容器,其中`PixelType`通常代表图像的像素类型,比如`Bgr, Gray, U8`, 等。而`Mat`则是OpenCV的核心数据结构,用于存储图像数据。 这两种数据结构之间可以相互转换,操作步骤如下: 1. **从Mat转换到Image<PixelType>**: - 使用`ConvertFromMat()`函数,例如: ```csharp var mat = new Mat(); // 假设已经加载了一个图像到Mat var image = new Image<PixelType>(mat); ``` 这会根据Mat的像素类型自动创建相应的Image对象。 2. **从Image<PixelType>转换到Mat**: - 使用`ToMat()`方法,例如: ```csharp var image = new Image<PixelType>(); // 假设有一个Image对象 var mat = image.ToMat(); ``` `ToMat()`会将Image的内容复制到新的Mat对象中。 注意,这种转换在内存管理上可能涉及到深拷贝或浅拷贝,具体取决于`Mat`和`Image<PixelType>`内部是如何存储数据的。同时,它们各自提供的功能也可能略有差异,所以在选择数据结构时要考虑应用场景的需求。
相关问题

emgucv Image<PixelType> 查找小图方法

在Emgu CV中,`Image<PixelType>` 是一种泛型图像类型,其中 `PixelType` 指定了图像的像素类型,例如 `Bgr, Gray, Bgra` 等。如果你想要在一个大的`Image`对象中查找一个小图,你可以考虑使用一些搜索算法,如模板匹配、区域生长等。 以下是一个基本的例子,使用模板匹配来查找特定的小图片(模板): ```csharp using Emgu.CV; using Emgu.CV.CvEnum; using System; // 定义模板图像 Image<Bgr, byte> template = new Image<Bgr, byte>("template.png"); // 定义源图像 Image<Bgr, byte> source = new Image<Bgr, byte>("source.jpg"); // 使用MatchTemplate方法进行模板匹配 Point matchLocation = new Point(); double similarity = CvInvoke.TM_CCOEFF_NORMED(template, source, out matchLocation); // 如果相似度足够高,则认为找到了匹配的位置 if (similarity > threshold) { Console.WriteLine($"模板在源图像中的位置: ({matchLocation.X}, {matchLocation.Y})"); }

emgucv Image<PixelType> 查找小图方法 示例

在OpenCV (EMGU CV) 中,`Image<PixelType>` 类是一个通用图像容器,可以处理各种颜色空间的图像数据。如果你想要查找并定位一个小图片在大图片中的位置,通常会用到模板匹配技术,比如 `matchTemplate()` 或 `goodFeaturesToTrack()` 函数。 这是一个简单的示例,假设你有一个小的目标图像 (`template`) 和一个大背景图像 (`image`,`Image<PixelType>` 类型),你可能会这样做: ```csharp using Emgu.CV; using Emgu.CV.Structure; // 定义目标小图 Mat template = new Mat("path_to_template.jpg", ImreadModes.Color); // 加载大背景图片 Mat image = new Mat("path_to_large_image.jpg", ImreadModes.Color); // 将图像调整到相同的大小,便于比较(可选操作) Mat resizedTemplate = resize(template, Size(image.Width / 2, image.Height / 2)); // 使用matchTemplate()函数查找相似区域 double[] result = new double[template.Rows * template.Cols]; image.MatchTemplate(resizedTemplate, result, TemplateMatchMethod.CORREL); // 找出最大值对应的坐标,即小图在大图中的位置 Point maxLoc = Point.Empty; maxLoc.X = BinarySearch(result, resizedTemplate.Rows - 1, 0, result.Length); maxLoc.Y = BinarySearch(result, resizedTemplate.Cols - 1, 0, result.Length); // 现在你可以检查 maxLoc 是否代表找到的位置 ``` 这里,`BinarySearch()` 函数用于查找最大值的索引,`result` 数组存储了匹配得分,最高分对应的位置就是最佳匹配。
阅读全文

相关推荐

# registration fixed_image = sitk.VectorIndexSelectionCast(fixed_rgb, 1) moving_image = sitk.VectorIndexSelectionCast(moving_rgb, 1) fixed_image = sitk.Cast(fixed_image, sitk.sitkFloat32) moving_image = sitk.Cast(moving_image, sitk.sitkFloat32) def command_iteration(method): if (method.GetOptimizerIteration() == 0): print("Estimated Scales: ", method.GetOptimizerScales()) print(f"{method.GetOptimizerIteration():3} = {method.GetMetricValue():7.5f} : {method.GetOptimizerPosition()}") pixelType = sitk.sitkFloat32 R = sitk.ImageRegistrationMethod() R.SetMetricAsCorrelation()#Use negative normalized cross correlation image metric. R.SetOptimizerAsRegularStepGradientDescent(learningRate=4.0, minStep=0.1, numberOfIterations=5000, gradientMagnitudeTolerance=1e-8)#Regular Step Gradient descent optimizer. R.SetOptimizerScalesFromIndexShift()#Estimate scales from maximum voxel shift in index space cause by parameter change. tx = sitk.CenteredTransformInitializer(fixed_image, moving_image, sitk.Similarity2DTransform()) R.SetInitialTransform(tx) R.SetInterpolator(sitk.sitkLinear) R.AddCommand(sitk.sitkIterationEvent, lambda: command_iteration(R)) outTx = R.Execute(fixed_image, moving_image) print("-------") print(outTx) print(f"Optimizer stop condition: {R.GetOptimizerStopConditionDescription()}") print(f" Iteration: {R.GetOptimizerIteration()}") print(f" Metric value: {R.GetMetricValue()}") resampler = sitk.ResampleImageFilter() resampler.SetReferenceImage(fixed_image) resampler.SetInterpolator(sitk.sitkLinear) resampler.SetDefaultPixelValue(1) resampler.SetTransform(outTx) out = resampler.Execute(moving_image) simg1 = sitk.Cast(sitk.RescaleIntensity(fixed_image), sitk.sitkUInt8) simg2 = sitk.Cast(sitk.RescaleIntensity(out), sitk.sitkUInt8) cimg = sitk.Compose(simg1, simg2, simg1 // 2. + simg2 // 2.) myshow(cimg)在这段代码中找到调整步长的地方

最新推荐

recommend-type

使用SimpleITK读取和保存NIfTI/DICOM文件实例

using ImageType = itk::Image&lt;PixelType, Dimension&gt;; // 读取图像 auto reader = itk::ImageFileReader&lt;ImageType&gt;::New(); reader-&gt;SetFileName(argv[1]); reader-&gt;Update(); // 创建writer auto writer...
recommend-type

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单片机编程实战】:掌握流水灯与音乐盒同步控制的高级技巧

![单片机编程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-48cf6abe199bab09d31c122e1f49cea4.png) # 摘要 单片机作为电子技术领域的基础组件,广泛应用于各类控制项目。本文从基础开始,详细探讨了单片机在流水灯和音乐盒项目中的应用原理,并分析了如何实现这两个功能的同步控制。通过对硬件和软件层面的深入剖析,本文提供了一系列实践操作和高级技巧,旨在提升流水灯与音乐盒同步控制的性能和效率。通过本研究,读者将能够更好地理解和掌握单片机在复杂控制系统中的应用,进而创新开发更多
recommend-type

java 号码后四位用‘xxxx’脱敏

在Java中,对电话号码后四位进行脱敏通常是为了保护用户隐私。你可以通过字符串截取和替换的方式来实现这个功能。下面是一个简单的示例: ```java public class Main { public static void main(String[] args) { String phoneNumber = "1234567890"; // 假设原始手机号 int startCutOff = phoneNumber.length() - 4; // 要开始切割的位置是后四位的起始位置 String maskedNumber = ph