[\x21-\x5a\x5c\x5e-\x7e]+

时间: 2023-08-28 21:23:18 浏览: 151
这是一个正则表达式模式,用于匹配 ASCII 字符集中的可打印字符。 `[\x21-\x5a\x5c\x5e-\x7e]` 是一个字符类,包含以下部分: - `\x21-\x5a` 匹配 ASCII 字符集中从感叹号("!")到大写字母 "Z" 的字符。 - `\x5c` 匹配反斜杠字符 "\"。 - `\x5e-\x7e` 匹配 ASCII 字符集中从插入符号("^")到波浪号("~")的字符。 整个正则表达式模式用于匹配包含 ASCII 可打印字符的字符串。这些可打印字符包括大写字母、感叹号、反斜杠和一些其他特殊字符。 请注意,这只是一个示例的正则表达式模式,实际应用中可能需要根据具体的需求进行调整和使用。
相关问题

def fitness(self, x): """ 个体适应值计算 """ X1 = x[0] X2 = x[1] X3 = x[2] X4 = x[3] X5 = x[4] X6 = x[5] X7 = x[6] X8 = x[7] X9 = x[8] X10 = x[9] X11 = x[10] X12 = x[11] X13 = x[12] X14 = x[13] X15 = x[14] X16 = x[15] X17 = x[16] X18 = x[17] X19 = x[18] X20 = x[19] X21 = x[20] X22 = x[21] X23 = x[22] X24 = x[23] #惩罚函数 Z = 500 * X1 + 550 * X2 + 630 * X3 + 1000 * X4 + 800 * X5 + 700 * X6 + 800 * X7 + 700 * X8 \ + 600 * X9 + 950 * X10 + 900 * X11 + 930 * X12 + 1000 * X13 + 960 * X14 + 840 * X15 + 650 * X16 \ + 600 * X17 + 700 * X18 + 1200 * X19 + 1040 * X20 + 980 * X21 + 860 * X22 + 880 * X23 + 780 * X24 \ - (10 ** 5) * (max(0, X1 + X7 + X13 + X19 - 42) + max(0, X2 + X8 + X14 + X20 - 56) + max(0,X3 + X9 + X15 + X21 - 44) + max(0, X4 + X10 + X16 + X22 - 39) + max(0, X5 + X11 + X17 + X23 - 60) + max(0,X6 + X12 + X18 + X24 - 59) + max(0, X1 + X2 + X3 + X4 + X5 + X6 - 76) + max(0, X7 + X8 + X9 + X10 + X11 + X12 - 88) + max(0, X13 + X14 + X15 + X16 + X17 + X18 - 96) + max(0,X19 + X20 + X21 + X22 + X23 + X24 - 40)) return z 怎么定义X、Z为整数

您可以使用Python中的内置函数`int()`将X和Z的值转换为整数类型。例如,将X1定义为整数类型的方法如下: ``` X1 = int(x[0]) ``` 同样地,您可以将所有的X都转换为整数类型。对于Z,您可以使用`int()`函数将其最终计算得到的值转换为整数类型。例如: ``` Z = int(500 * X1 + 550 * X2 + 630 * X3 + 1000 * X4 + 800 * X5 + 700 * X6 + 800 * X7 + 700 * X8 \ + 600 * X9 + 950 * X10 + 900 * X11 + 930 * X12 + 1000 * X13 + 960 * X14 + 840 * X15 + 650 * X16 \ + 600 * X17 + 700 * X18 + 1200 * X19 + 1040 * X20 + 980 * X21 + 860 * X22 + 880 * X23 + 780 * X24 \ - (10 ** 5) * (max(0, X1 + X7 + X13 + X19 - 42) + max(0, X2 + X8 + X14 + X20 - 56) + max(0,X3 + X9 + X15 + X21 - 44) \ + max(0, X4 + X10 + X16 + X22 - 39) + max(0, X5 + X11 + X17 + X23 - 60) + max(0,X6 + X12 + X18 + X24 - 59) \ + max(0, X1 + X2 + X3 + X4 + X5 + X6 - 76) + max(0, X7 + X8 + X9 + X10 + X11 + X12 - 88) \ + max(0, X13 + X14 + X15 + X16 + X17 + X18 - 96) + max(0,X19 + X20 + X21 + X22 + X23 + X24 - 40))) ``` 这样,您就可以将所有的X和Z定义为整数类型了。

正则/[\x21-\x2f\x3a-\x40\x5b-\x60\x7B-\x7F\0-\9\a-\z\A-\Z]/gi

正则表达式是一种用于匹配和操作文本的强大工具。在你提供的正则表达式中,/[\x21-\x2f\x3a-\x40\x5b-\x60\x7B-\x7F\0-\9\a-\z\A-\Z]/gi 是一个包含多个字符范围的正则表达式。 解析该正则表达式: - [] 表示字符类,匹配方括号内的任意一个字符。 - \x21-\x2f 表示 ASCII 码十六进制范围从 21 到 2f 的字符,包括标点符号和斜杠。 - \x3a-\x40 表示 ASCII 码十六进制范围从 3a 到 40 的字符,包括冒号和问号等符号。 - \x5b-\x60 表示 ASCII 码十六进制范围从 5b 到 60 的字符,包括中括号和反引号等符号。 - \x7B-\x7F 表示 ASCII 码十六进制范围从 7B 到 7F 的字符,包括大括号和波浪号等符号。 - \0-\9 表示 ASCII 码十六进制范围从 00 到 09 的字符,包括数字 0 到 9。 - \a-\z 表示 ASCII 码十六进制范围从 0a 到 7a 的字符,包括小写字母。 - \A-\Z 表示 ASCII 码十六进制范围从 41 到 5a 的字符,包括大写字母。 最后的 /gi 是正则表达式的修饰符,其中 "g" 表示全局匹配(即匹配所有符合条件的结果),"i" 表示不区分大小写。 综上所述,该正则表达式可以匹配包括标点符号、斜杠、冒号、问号、中括号、反引号、大括号、波浪号、数字和字母(包括大小写)在内的所有字符。
阅读全文

相关推荐

X2=[] X3=[] X4=[] X5=[] X6=[] X7=[] X1=[i for i in range(1,24) for j in range(128)] X1=X1[:2928] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(3,)) X2=df.values.tolist() x2=[] x21=[] for i in X2: if X2.index(i)<=2927: x2.append(i) else: x21.append(i) # x2=x2[:len(x21)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(4,)) X3=df.values.tolist() x3=[] x31=[] for i in X3: if X3.index(i)<=2927: x3.append(i) else: x31.append(i) # x3=x3[:len(x31)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(5,)) X4=df.values.tolist() x4=[] x41=[] for i in X4: if X4.index(i)<=2927: x4.append(i) else: x41.append(i) # x4=x4[:len(x41)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(6,)) X5=df.values.tolist() x5=[] x51=[] for i in X5: if X5.index(i)<=2927: x5.append(i) else: x51.append(i) # x5=x5[:len(x51)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(7,)) X6=df.values.tolist() x6=[] x61=[] for i in X6: if X6.index(i)<=2927: x6.append(i) else: x61.append(i) # x6=x6[:len(x61)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(8,)) X7=df.values.tolist() x7=[] x71=[] for i in X7: if X7.index(i)<=2927: x7.append(i) else: x71.append(i) # x7=x7[:len(x71)]np.random.seed(42) q=np.array(X1) w=np.array(x2) e=np.array(x3) r=np.array(x4) t=np.array(x5) p=np.array(x6) u=np.array(x7) eps=np.random.normal(0,0.05,152) X=np.c_[q,w,e,r,t,p,u] beta=[0.1,0.15,0.2,0.5,0.33,0.45,0.6] y=np.dot(X,beta) X_model=sm.add_constant(X) model=sm.OLS(y,X_model) results=model.fit() print(results.summary())具体代码如下,要怎么修改?

import numpy as np import pylab as pl import pandas as pd from sklearn.linear_model import Ridge from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split X2=[] X3=[] X4=[] X5=[] X6=[] X7=[] X1=[i for i in range(1,24) for j in range(128)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(3,)) X2=df.values.tolist() x2=[] x21=[] for i in X2: if X2.index(i)<=2927: #两个单元楼的分隔数 x2.append(i) else: x21.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(4,)) X3=df.values.tolist() x3=[] x31=[] for i in X3: if X3.index(i)<=2927: x3.append(i) else: x31.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(5,)) X4=df.values.tolist() x4=[] x41=[] for i in X4: if X4.index(i)<=2927: x4.append(i) else: x41.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(6,)) X5=df.values.tolist() x5=[] x51=[] for i in X5: if X5.index(i)<=2927: x5.append(i) else: x51.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(7,)) X6=df.values.tolist() x6=[] x61=[] for i in X6: if X6.index(i)<=2927: x6.append(i) else: x61.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(8,)) X7=df.values.tolist() x7=[] x71=[] for i in X7: if X7.index(i)<=2927: x7.append(i) else: x71.append(i) np.random.seed(42) q=np.array(X1[:2922]) w=np.array(x21[:2922]) e=np.array(x31[:2922]) r=np.array(x41[:2922]) t=np.array(x51[:2922]) p=np.array(x61[:2922]) u=np.array(x71[:2922]) eps=np.random.normal(0,0.05,152) X=np.c_[q,w,e,r,t,p,u] beta=[0.1,0.15,0.2,0.5,0.33,0.45,0.6] y=np.dot(X,beta)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) alpha = 0.1 # 设置岭回归的惩罚参数 ridge = Ridge(alpha=alpha) ridge.fit(X_train, y_train) y_pred = ridge.predict(X_test) mse = mean_squared_error(y_test, y_pred) print('MSE:', mse) coef = ridge.coef_ # 计算岭回归的系数 intercept = ridge.intercept_ # 计算岭回归的截距 print('Coefficients:', coef) print('Intercept:', intercept)

Unable to handle kernel paging request at virtual address 0000000200005401 [ 21.757454] Mem abort info: [ 21.760240] ESR = 0x96000004 [ 21.763286] Exception class = DABT (current EL), IL = 32 bits [ 21.769199] SET = 0, FnV = 0 [ 21.772245] EA = 0, S1PTW = 0 [ 21.775378] Data abort info: [ 21.778250] ISV = 0, ISS = 0x00000004 [ 21.782078] CM = 0, WnR = 0 [ 21.785038] [0000000200005401] user address but active_mm is swapper [ 21.791385] Internal error: Oops: 96000004 [#2] PREEMPT SMP [ 21.796951] Modules linked in: [ 21.800002] CPU: 0 PID: 1 Comm: swapper/0 Tainted: G S D 4.19.0-4.19.9-x100-0707+ #30 [ 21.808956] Hardware name: E2000Q TESTC DDR4 Board (DT) [ 21.814175] pstate: 20000085 (nzCv daIf -PAN -UAO) [ 21.818963] pc : __kmalloc+0xe8/0x248 [ 21.822618] lr : __kmalloc+0x48/0x248 [ 21.826272] sp : ffff000008003c50 [ 21.829580] x29: ffff000008003c50 x28: 0000000000000001 [ 21.834888] x27: ffff000009911158 x26: ffff000009c267cb [ 21.840196] x25: 0000000000000000 x24: 0000000000000001 [ 21.845504] x23: 0000000000016e00 x22: ffff000008733b0c [ 21.850812] x21: 0000000000480020 x20: 0000000200005401 [ 21.856120] x19: ffff8020ff803800 x18: ffffffffffffffff [ 21.861429] x17: 0000000000001800 x16: 0000000000000000 [ 21.866737] x15: ffff000009b696c8 x14: 0720072007200720 [ 21.872044] x13: 0720072007200720 x12: 0720072007200720 [ 21.877353] x11: 0720072007200720 x10: 0000000000000040 [ 21.882660] x9 : ffff000009b84f20 x8 : ffff8020ff400248 [ 21.887968] x7 : ffff8020ff4002b8 x6 : 0000000000000048 [ 21.893276] x5 : 00008020f6425000 x4 : 0000000000000000 [ 21.898584] x3 : ffff7e0083d67e00 x2 : 00008020f6425000 [ 21.903892] x1 : 0000000000000000 x0 : 0000000000000001 [ 21.909201] Process swapper/0 (pid: 1, stack limit = 0x(____ptrval____)) [ 21.915895] Call trace: [ 21.918335] __kmalloc+0xe8/0x248 [ 21.921646] __tty_buffer_request_room+0x7c/0x148 [ 21.926344] __tty_insert_flip_char+0x28/0x80 [ 21.930696] uart_insert_char+0xd4/0x140 [ 21.934613] pl011_fifo_to_tty+0x88/0x1b8 [ 21.938616] pl011_int+0x340/0x488分析一下这段内核报错

最新推荐

recommend-type

PLC课程设计 自动售货机

在PLC程序中,这可以通过读取X15、X7和X21的输入信号来实现。当对应的硬币投入时,PLC会记录相应的金额。 2. **商品定价**:商品价格设置为纯水1.50元、可乐2.50元、牛奶3.00元和纯奶3.50元。程序需要有逻辑判断,...
recommend-type

C2000,28335Matlab Simulink代码生成技术,处理器在环,里面有电力电子常用的GPIO,PWM,ADC,DMA,定时器中断等各种电力电子工程师常用的模块儿,只需要有想法剩下的全部自

C2000,28335Matlab Simulink代码生成技术,处理器在环,里面有电力电子常用的GPIO,PWM,ADC,DMA,定时器中断等各种电力电子工程师常用的模块儿,只需要有想法剩下的全部自动代码生成, 电源建模仿真与控制原理 (1)数字电源的功率模块建模 (2)数字电源的环路补偿器建模 (3)数字电源的仿真和分析 (4)如何把数学控制方程变成硬件C代码; (重点你的想法如何实现)这是重点数字电源硬件资源、软件设计、上机实验调试 (1) DSP硬件资源; (2)DSP的CMD文件与数据的Q格式: (3) DSP的C程序设计; (4)数字电源的软件设计流程 (5)数字电源上机实验和调试(代码采用全中文注释)还有这个,下面来看看都有啥,有视频和对应资料(S代码,对应课件详细讲述传递函数推倒过程。
recommend-type

OpenArk64-1.3.8beta版-20250104

OpenArk64-1.3.8beta版-20250104,beta版解决Windows 11 23H2及以上进入内核模式,查看系统热键一片空白的情况
recommend-type

面向对象(下)代码.doc

java面向对象程序设计实验报告
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依