from collections import deque #deque为双向队列,可以从队头尾快速操作 def Duplicate_check(s): queue = deque() #生成一个名字为queue的队列 for i in range(len(s)): c = s[i] # 队列中存在了当前字母,那么就不能再添加进去了,则跳过下列步骤,继续循环 if c in queue: continue # 如果队列中有元素,且队尾元素比当前字母大,且后面还会出现该队尾元素,那就弹出它。 while queue and queue[-1] > c and s.find(queue[-1], i) > 0: queue.pop() # 当前字母入队列 queue.append(c) res = "" # 将队列中的元素从队头至队尾弹出,就是答案了 while queue: res += queue.popleft() return res #返回答案 s = input() #输入 s = Duplicate_check(s) #调用函数处理 print(s) #输出 为这个程序做一个窗口化

时间: 2024-04-16 07:26:16 浏览: 14
要将这个程序窗口化,你可以使用Python的内库`tkinter`来创建一个简单的图形用户界面(GUI)。下面是一个窗口化版本的程序示例: ```python from collections import deque import tkinter as tk def duplicate_check(): s = entry.get() # 获取输入框中的字符串 queue = deque() for i in range(len(s)): c = s[i] if c in queue: continue while queue and queue[-1] > c and s.find(queue[-1], i) > 0: queue.pop() queue.append(c) res = "" while queue: res += queue.popleft() result_label.config(text=res) # 显示结果在标签中 # 创建GUI窗口 window = tk.Tk() window.title("Duplicate Check") window.geometry("300x150") # 创建输入框 entry = tk.Entry(window) entry.pack(pady=10) # 创建按钮 button = tk.Button(window, text="Check", command=duplicate_check) button.pack() # 创建结果标签 result_label = tk.Label(window, text="") result_label.pack(pady=10) # 运行窗口主循环 window.mainloop() ``` 运行以上代码,你将会看到一个具有输入框、按钮和结果标签的窗口。输入你要检查重复字符的字符串,点击“Check”按钮,程序将在结果标签中显示去重后的字符串。

相关推荐

import random from collections import deque # 定义状态类 class State: def __init__(self, location, direction, grid): self.location = location # 吸尘器位置坐标 self.direction = direction # 吸尘器方向 self.grid = grid # 环境状态矩阵 # 定义操作符 actions = ['UP', 'DOWN', 'LEFT', 'RIGHT'] movements = { 'UP': (-1, 0), 'DOWN': (1, 0), 'LEFT': (0, -1), 'RIGHT': (0, 1) } def move(state, action): # 根据操作进行移动 row, col = state.location dr, dc = movements[action] new_location = (row + dr, col + dc) new_direction = action new_grid = state.grid.copy() new_grid[row][col] = 0 return State(new_location, new_direction, new_grid) # 实现广度优先搜索算法 def bfs(initial_state): queue = deque([initial_state]) while queue: state = queue.popleft() if is_goal_state(state): return state for action in actions: new_state = move(state, action) queue.append(new_state) return None # 判断是否为目标状态 def is_goal_state(state): for row in state.grid: for cell in row: if cell != 0: return False return True # 构造初始状态 def generate_initial_state(): location = (random.randint(0, 2), random.randint(0, 2)) direction = random.choice(actions) grid = [[1 if random.random() < 0.2 else 0 for _ in range(3)] for _ in range(3)] return State(location, direction, grid) # 运行搜索算法 initial_state = generate_initial_state() goal_state = bfs(initial_state) # 评价性能 def calculate_path_cost(state): path_cost = 0 for row in state.grid: for cell in row: if cell != 0: path_cost += 1 return path_cost def calculate_search_cost(): search_cost = 0 queue = deque([initial_state]) while queue: state = queue.popleft() search_cost += 1 if is_goal_state(state): return search_cost for action in actions: new_state = move(state, action) queue.append(new_state) return search_cost path_cost = calculate_path_cost(goal_state) search_cost = calculate_search_cost() print("目标状态路径代价:", path_cost) print("搜索开销:", search_cost) 错误为:list index out of range 请改正

补全代码:from collections import deque class BTNode: #二叉链中结点类 def init(self,d=None): #构造方法 …… class BTree: #二叉树类 def init(self,d=None): #构造方法 …… def DispBTree(self): #返回二叉链的括号表示串 …… def _DispBTree1(self,t): #被DispBTree方法调用 …… def FindNode(self,x): #查找值为x的结点算法 …… def _FindNode1(self,t,x): #被FindNode方法调用 ……. def Height(self): #求二叉树高度的算法 …… def _Height1(self,t): #被Height方法调用 …… def PreOrder(bt): #先序遍历的递归算法 ……. def _PreOrder(t): #被PreOrder方法调用 …… def InOrder(bt): #中序遍历的递归算法 …… def _InOrder(t): #被InOrder方法调用 …… def PostOrder(bt): #后序遍历的递归算法 …… def _PostOrder(t): #被PostOrder方法调用 …… def LevelOrder(bt): #层次遍历的算法 …… def CreateBTree2(posts,ins): #由后序序列posts和中序序列ins构造二叉链 …… def _CreateBTree2(posts,i,ins,j,n): #被CreateBTree2方法调用 …… #主程序 ins=[……] posts=[……] print() print(" 中序:",end=' '); print(ins) print(" 后序:",end=' '); print(posts) print(" 构造二叉树bt") bt= ___ ___ ___ ___ bt= ___ ___ ___ ___ print(" bt:",end=' '); print(bt.DispBTree()) x= ___ ___ ___ ___ p=bt.FindNode(x) if p!=None: print(" bt中存在"+x) else: print(" bt中不存在"+x) print(" bt的高度=%d" %(bt.Height())) print(" 先序序列:",end=' '); _ ___ ___ ___;print() print(" 中序序列:",end=' '); _ ___ ___ ___;print() print(" 后序序列:",end=' '); _ ___ ___ ___;print() print(" 层次序列:",end=' '); _ ___ ___ ___;print()

补全代码 from collections import deque class BTNode: #二叉链中结点类 def init(self,d=None): #构造方法 …… class BTree: #二叉树类 def init(self,d=None): #构造方法 …… def DispBTree(self): #返回二叉链的括号表示串 …… def _DispBTree1(self,t): #被DispBTree方法调用 …… def FindNode(self,x): #查找值为x的结点算法 …… def _FindNode1(self,t,x): #被FindNode方法调用 ……. def Height(self): #求二叉树高度的算法 …… def _Height1(self,t): #被Height方法调用 …… def PreOrder(bt): #先序遍历的递归算法 ……. def _PreOrder(t): #被PreOrder方法调用 …… def InOrder(bt): #中序遍历的递归算法 …… def _InOrder(t): #被InOrder方法调用 …… def PostOrder(bt): #后序遍历的递归算法 …… def _PostOrder(t): #被PostOrder方法调用 …… def LevelOrder(bt): #层次遍历的算法 …… def CreateBTree2(posts,ins): #由后序序列posts和中序序列ins构造二叉链 …… def _CreateBTree2(posts,i,ins,j,n): #被CreateBTree2方法调用 …… #主程序 ins=[……] posts=[……] print() print(" 中序:",end=' '); print(ins) print(" 后序:",end=' '); print(posts) print(" 构造二叉树bt") bt= ___ ___ ___ ___ bt= ___ ___ ___ ___ print(" bt:",end=' '); print(bt.DispBTree()) x= ___ ___ ___ ___ p=bt.FindNode(x) if p!=None: print(" bt中存在"+x) else: print(" bt中不存在"+x) print(" bt的高度=%d" %(bt.Height())) print(" 先序序列:",end=' '); _ ___ ___ ___;print() print(" 中序序列:",end=' '); _ ___ ___ ___;print() print(" 后序序列:",end=' '); _ ___ ___ ___;print() print(" 层次序列:",end=' '); _ ___ ___ ___;print()补全代码

优化下面代码class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None root = TreeNode('a') root.left = TreeNode('b') root.right = TreeNode('c') root.left.left = TreeNode('d') root.left.right = TreeNode('e') root.right.left = TreeNode('f') root.right.right = TreeNode('g') root.left.left.left = TreeNode('h') root.left.left.right = TreeNode('i') def preorder_traversal(root): if not root: return print(root.val, end=' ') preorder_traversal(root.left) preorder_traversal(root.right) def inorder_traversal(root): if not root: return inorder_traversal(root.left) print(root.val, end=' ') inorder_traversal(root.right) def postorder_traversal(root): if not root: return postorder_traversal(root.left) postorder_traversal(root.right) print(root.val, end=' ') from collections import deque def level_order_traversal(root): if not root: return queue = deque() queue.append(root) while queue: node = queue.popleft() print(node.val, end=' ') if node.left: queue.append(node.left) if node.right: queue.append(node.right) def get_height(root): if not root: return 0 left_height = get_height(root.left) right_height = get_height(root.right) return max(left_height, right_height) + 1 def get_node_count(root): if not root: return 0 left_node_count = get_node_count(root.left) right_node_count = get_node_count(root.right) return left_node_count + right_node_count + 1 print("先序遍历:") preorder_traversal(root) print("中序遍历:") inorder_traversal(root) print("后序遍历:") postorder_traversal(root) print("层次遍历:") level_order_traversal(root) print("该二叉树的高度为:") get_height(root) print("该二叉树的节点个数为 ") get_node_count(root)

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

get() { return this.photoState },

这是一个 JavaScript 中的方法定义,它定义了一个名为 `get` 的方法。这个方法没有参数,它返回了 `this.photoState`。在这个方法中,`this` 是指当前对象,而 `photoState` 是该对象的一个属性。通常情况下,`get` 方法用于获取对象的属性值,并且可以在获取属性值之前进行一些逻辑操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

id=1 and 1=3 union select 1,group_concat(uismkhbuow_name) from xtfrfdxcsk.uismkhbuow ;哪错了

这是一个 SQL 注入攻击的语句,其中 `1=3` 是永远不成立的条件,所以整个语句都是错误的。这个语句的目的是通过注入一段查询语句,来获取 `xtfrfdxcsk.uismkhbuow` 表中的数据。但是这样的操作是非法的,不仅会破坏数据库的完整性和安全性,还可能触犯法律。建议不要尝试进行 SQL 注入攻击。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩