编写hive UDAF
时间: 2023-11-11 07:56:42 浏览: 153
编写Hive UDAF有两种方式:简单UDAF和通用UDAF。
简单UDAF在编写上相对简单,但是由于使用Java反射,会导致性能的损失,并且不能使用一些特性,因此已经被弃用。
通用UDAF允许使用更多的特性,但是在编写上可能不如简单UDAF直观。通用UDAF的开发涉及到以下两个抽象类:
1. org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator:实现了UDAF的逻辑,包括聚合函数的初始化、迭代和返回结果等操作。
2. org.apache.hadoop.hive.ql.udf.generic.GenericUDAFResolver:用于解析并返回GenericUDAFEvaluator对象。
编写Hive UDAF的步骤如下:
1. 创建一个新的Java类,并继承GenericUDAFEvaluator。
2. 实现init()方法,用于初始化聚合函数的状态。
3. 实现iterate()方法,用于迭代处理每个输入行。
4. 实现terminatePartial()方法,用于返回部分聚合结果。
5. 实现merge()方法,用于合并两个部分聚合结果。
6. 实现terminate()方法,用于返回最终的聚合结果。
7. 创建一个新的Java类,并继承GenericUDAFResolver。
8. 实现getEvaluator()方法,用于返回自定义的GenericUDAFEvaluator对象。
相关问题
hive udaf 合并json字符串
可以使用 `collect_list` 函数来将多个 JSON 字符串合并成一个数组,然后使用 `concat_ws` 函数将数组中的元素连接起来,从而得到合并后的 JSON 字符串。
以下是一个示例 UDAF 的实现:
```sql
CREATE TEMPORARY FUNCTION merge_json AS 'org.apache.hadoop.hive.contrib.udaf.example.GenericUDAFMergingJson';
CREATE TEMPORARY TABLE test_json (
id INT,
json_str STRING
);
INSERT INTO test_json VALUES
(1, '{"name": "Alice", "age": 20}'),
(1, '{"name": "Bob", "age": 30}'),
(2, '{"name": "Charlie", "age": 25}');
SELECT id, concat_ws(',', collect_list(json_str)) AS merged_json
FROM test_json
GROUP BY id;
```
执行以上代码后,可以得到如下输出:
```
id merged_json
1 {"name": "Alice", "age": 20},{"name": "Bob", "age": 30}
2 {"name": "Charlie", "age": 25}
```
在上面的代码中,`GenericUDAFMergingJson` 是一个示例 UDAF,它将多个 JSON 字符串合并成一个数组,并将该数组转换成一个字符串,中间用逗号分隔。你也可以根据自己的需求编写一个 UDAF 来实现类似的功能。
使用java编写hive的自定义udaf函数
### 回答1:
可以使用Java语言编写Hive的自定义UDAF函数,但需要使用Hadoop Streaming API和Hadoop MapReduce API,并且需要确保实现的UDAF函数符合Hive的语义规范。
### 回答2:
Hive是一个开源的大数据仓库系统,用于处理和分析大规模结构化数据。Hive提供了丰富的函数库,以支持各种用例。除了内置函数外,Hive还支持自定义函数,其中包括自定义UDAF(用户定义的聚合函数)。
使用Java编写Hive的自定义UDAF函数可以按照以下步骤进行:
1. 创建一个Java类,用于实现自定义的UDAF函数。这个类需要继承Hive的GenericUDAFResolver2接口,并实现其中的方法。
2. 在Java类中,需要定义输入参数类型、中间状态类型和输出类型。根据自定义UDAF函数的需求,可以使用Hive提供的数据类型,如IntWritable、DoubleWritable等。
3. 在Java类中,需要实现initialize、iterate、merge和terminatePartial等方法,用于初始化和处理计算逻辑。
- initialize方法用于初始化中间状态;
- iterate方法用于迭代处理每一行输入数据;
- merge方法用于合并不同mapper或reducer的中间状态;
- terminatePartial方法用于返回部分聚合结果。
4. 在Java类中,需要实现terminate方法,用于返回最终的聚合结果。
5. 编译Java类,并将生成的jar文件添加到Hive的classpath中。
6. 在Hive中,使用CREATE FUNCTION语句创建自定义UDAF函数,并指定使用的jar文件和Java类名。
7. 在Hive中,可以使用自定义UDAF函数进行聚合操作,例如使用SELECT语句。
编写Java类时,需要根据自定义UDAF函数的需求进行逻辑的实现。在编写完成后,应当进行测试和调试,确保函数的正确性和性能。
通过以上步骤,就可以使用Java编写Hive的自定义UDAF函数,以满足特定的需求,对大规模结构化数据进行聚合和分析。
### 回答3:
使用Java编写Hive的自定义UDAF函数需要以下步骤:
1. 创建一个Java类,实现Hive中的GenericUDAFEvaluator接口。该接口定义了自定义UDAF函数的行为。
2. 在类中实现五个方法:init()、iterate()、terminatePartial()、merge()和terminate()。
- init()方法用于初始化函数的内部状态。
- iterate()方法用于每次处理输入值。
- terminatePartial()方法在部分聚合完成后返回部分结果。
- merge()方法用于合并部分结果。
- terminate()方法在整个聚合完成后返回最终结果。
3. 在类中定义一个静态内部类,实现AggregationBuffer接口,用于存储聚合结果的中间状态。
4. 在类中重写toString()方法,用于返回自定义聚合函数的名称。
5. 在Hive中使用CREATE FUNCTION语句注册自定义UDAF函数,指定Java类的路径和函数名称。
下面是一个示例:
```java
import org.apache.hadoop.hive.ql.exec.UDAF;
import org.apache.hadoop.hive.ql.exec.UDAFEvaluator;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StandardListObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StandardPrimitiveObjectInspector;
import java.util.ArrayList;
import java.util.List;
public class CustomUDAF extends UDAF {
public static class Evaluator implements UDAFEvaluator {
private List<Double> values;
@Override
public void init() throws HiveException {
values = new ArrayList<Double>();
}
// 输入值处理
public boolean iterate(Double value) throws HiveException {
if (value != null) {
values.add(value);
}
return true;
}
// 返回部分结果
public List<Double> terminatePartial() {
return values;
}
// 合并部分结果
public boolean merge(List<Double> other) {
if (other != null) {
values.addAll(other);
}
return true;
}
// 返回最终结果
public Double terminate() {
Double sum = 0.0;
for (Double value : values) {
sum += value;
}
return sum;
}
// 定义输入和输出值的类型
public ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException {
return StandardListObjectInspector
.getListObjectInspector(StandardPrimitiveObjectInspector.PrimitiveCategory.DOUBLE);
}
}
@Override
public String toString() {
return "custom_udaf";
}
}
```
在Hive中使用以下命令注册UDAF函数:
```sql
CREATE FUNCTION custom_udaf AS 'com.example.CustomUDAF' USING JAR 'path/to/custom_udaf.jar';
```
然后可以在Hive中使用自定义UDAF函数进行聚合操作,例如:
```sql
SELECT column, custom_udaf(column) AS sum FROM table GROUP BY column;
```
阅读全文