hadoop WordCount
时间: 2023-07-04 22:29:13 浏览: 177
Hadoop WordCount是一个经典的MapReduce程序,用于对文本数据进行词频统计。实现方法如下:
1. Map阶段:将文本数据按照指定的分隔符进行切分,将每个单词作为Key,将频率作为Value传递给Reduce阶段。
2. Reduce阶段:将Map阶段传递过来的Key-Value对进行合并,统计每个单词在文本中出现的次数,输出最终的词频统计结果。
以下是Hadoop WordCount的Java代码示例:
```java
public class WordCount {
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
以上代码中,TokenizerMapper类实现了Map阶段的逻辑,IntSumReducer类实现了Reduce阶段的逻辑,main函数用于配置和提交MapReduce作业。
阅读全文