生成一段基于PGD攻击算法输入和输出图像都为32*32像素的代码
时间: 2024-02-11 17:09:00 浏览: 74
又一个图像处理的代码
好的,以下是一个使用PGD攻击算法对CIFAR-10数据集中32*32像素图像进行攻击的示例代码:
```python
import torch
import torchvision
import torchvision.transforms as transforms
from models import Net # 自定义的模型
def pgd_attack(model, images, labels, eps=0.3, alpha=2/255, iters=40):
# PGD攻击函数
loss = torch.nn.CrossEntropyLoss()
ori_images = images.data
for i in range(iters):
images.requires_grad = True
outputs = model(images)
cost = loss(outputs, labels).to(device)
grad = torch.autograd.grad(cost, images,
retain_graph=False, create_graph=False)[0]
adv_images = images + alpha*grad.sign()
eta = torch.clamp(adv_images - ori_images, min=-eps, max=eps)
images = torch.clamp(ori_images + eta, min=0, max=1).detach_()
return images
# 加载CIFAR-10数据集
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 实例化模型
model = Net()
model.to(device)
# 训练模型
# 对测试集中的图像进行PGD攻击
dataiter = iter(testloader)
images, labels = dataiter.next()
images = images.to(device)
labels = labels.to(device)
adv_images = pgd_attack(model, images, labels)
# 显示原始图像和攻击后的图像
import matplotlib.pyplot as plt
import numpy as np
def imshow(img):
img = img / 2 + 0.5 # 非标准化
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
imshow(torchvision.utils.make_grid(images.cpu()))
imshow(torchvision.utils.make_grid(adv_images.cpu()))
```
需要注意的是,这里的`models.Net()`是一个自定义的模型,你需要根据你自己的模型进行相应的修改。同时,需要确保你的模型能够处理32*32像素的图像。
阅读全文