垃圾短信识别深度学习代码
时间: 2023-08-19 12:03:57 浏览: 94
以下是一个使用深度学习模型进行垃圾短信识别的示例代码(使用 PyTorch 框架实现):
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.legacy import data
from torchtext.legacy import datasets
# 定义模型
class RNN(nn.Module):
def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim):
super().__init__()
self.embedding = nn.Embedding(input_dim, embedding_dim)
self.rnn = nn.RNN(embedding_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, text):
embedded = self.embedding(text)
output, hidden = self.rnn(embedded)
assert torch.equal(output[-1,:,:], hidden.squeeze(0))
return self.fc(hidden.squeeze(0))
# 定义训练和测试函数
def train(model, iterator, optimizer, criterion):
epoch_loss = 0
epoch_acc = 0
model.train()
for batch in iterator:
optimizer.zero_grad()
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
acc = binary_accuracy(predictions, batch.label)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def evaluate(model, iterator, criterion):
epoch_loss = 0
epoch_acc = 0
model.eval()
with torch.no_grad():
for batch in iterator:
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
acc = binary_accuracy(predictions, batch.label)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def binary_accuracy(preds, y):
rounded_preds = torch.round(torch.sigmoid(preds))
correct = (rounded_preds == y).float()
acc = correct.sum() / len(correct)
return acc
# 加载数据
TEXT = data.Field(tokenize='spacy')
LABEL = data.LabelField(dtype=torch.float)
train_data, test_data = datasets.SMSSpamDataset.splits(
TEXT, LABEL)
train_data, valid_data = train_data.split(random_state=random.seed(SEED))
# 构建词汇表和数据迭代器
MAX_VOCAB_SIZE = 25000
TEXT.build_vocab(train_data,
max_size=MAX_VOCAB_SIZE,
vectors="glove.6B.100d",
unk_init=torch.Tensor.normal_)
LABEL.build_vocab(train_data)
BATCH_SIZE = 64
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size=BATCH_SIZE,
device=device)
# 创建模型和优化器
INPUT_DIM = len(TEXT.vocab)
EMBEDDING_DIM = 100
HIDDEN_DIM = 256
OUTPUT_DIM = 1
model = RNN(INPUT_DIM, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM)
optimizer = optim.Adam(model.parameters())
criterion = nn.BCEWithLogitsLoss()
model = model.to(device)
criterion = criterion.to(device)
# 训练模型
N_EPOCHS = 5
for epoch in range(N_EPOCHS):
train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
print(f'Epoch: {epoch+1:02}')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
# 测试模型
test_loss, test_acc = evaluate(model, test_iterator, criterion)
print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%')
```
此代码使用 RNN 模型进行垃圾短信识别,并使用 TorchText 库加载和处理数据。可以通过修改模型架构和超参数来改进模型的性能。