视觉识别深度学习的Matlab代码
时间: 2023-12-12 22:05:54 浏览: 84
深度学习matlab代码
以下是一个简单的基于深度学习的视觉识别 MATLAB 代码示例:
1. 加载数据
```matlab
imds = imageDatastore('path/to/images','IncludeSubfolders',true,'LabelSource','foldernames');
```
2. 定义深度学习网络
```matlab
layers = [
imageInputLayer([224 224 3])
convolution2dLayer(3,64,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,128,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,256,'Padding','same')
batchNormalizationLayer
reluLayer
convolution2dLayer(3,256,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,512,'Padding','same')
batchNormalizationLayer
reluLayer
convolution2dLayer(3,512,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,512,'Padding','same')
batchNormalizationLayer
reluLayer
convolution2dLayer(3,512,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
fullyConnectedLayer(4096)
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(4096)
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
```
3. 设置训练选项
```matlab
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.001, ...
'MiniBatchSize',32, ...
'MaxEpochs',10, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
```
4. 训练网络
```matlab
net = trainNetwork(imds,layers,options);
```
5. 测试网络
```matlab
[testData,labels] = imdsTest.Labels;
predictedLabels = classify(net,testData);
accuracy = sum(predictedLabels == labels)/numel(labels);
```
这只是一个简单的示例代码,实际上,视觉识别的深度学习网络可以非常复杂,需要根据具体任务进行调整。
阅读全文