二维轨迹的无迹卡尔曼预测 python
时间: 2023-10-14 09:06:33 浏览: 90
以下是二维轨迹的无迹卡尔曼预测 Python 代码示例:
```python
import numpy as np
def unscented_transform(sigma_points, weights):
mean = np.sum(sigma_points * weights, axis=1)
residual = sigma_points - mean[:, np.newaxis]
covariance = np.dot(residual, np.dot(np.diag(weights), residual.T))
return mean, covariance
class UnscentedKalmanFilter(object):
def __init__(self, dt, state_dim, measurement_dim, process_noise_cov, measurement_noise_cov):
self.dt = dt
self.state_dim = state_dim
self.measurement_dim = measurement_dim
self.process_noise_cov = process_noise_cov
self.measurement_noise_cov = measurement_noise_cov
self.n_sigma = 2 * state_dim + 1
self.alpha = 1e-3
self.beta = 2
self.kappa = 0
self.lambda_ = self.alpha ** 2 * (state_dim + self.kappa) - state_dim
self.weights_mean = np.zeros(self.n_sigma)
self.weights_cov = np.zeros(self.n_sigma)
self.sigma_points = np.zeros((state_dim, self.n_sigma))
self.measurement_sigma_points = np.zeros((measurement_dim, self.n_sigma))
self.x = np.zeros(state_dim)
self.P = np.eye(state_dim) * 1e-6
def predict(self, u=None):
sigma_points = self._generate_sigma_points(self.x, self.P)
self.sigma_points = sigma_points
if u is not None:
sigma_points = self._add_control_input(sigma_points, u)
sigma_points = self._propagate(sigma_points, self.dt)
self.x, self.P = unscented_transform(sigma_points, self.weights_cov)
self.P += self.process_noise_cov
def update(self, z):
self.measurement_sigma_points = self._generate_measurement_sigma_points(self.sigma_points)
z_mean, z_cov = unscented_transform(self.measurement_sigma_points, self.weights_mean)
S = z_cov + self.measurement_noise_cov
residual = self.measurement_sigma_points - z_mean[:, np.newaxis]
cross_cov = np.dot(self.sigma_points - self.x[:, np.newaxis], np.dot(np.diag(self.weights_cov), residual.T))
K = np.dot(cross_cov, np.linalg.inv(S))
self.x += np.dot(K, z - z_mean)
self.P -= np.dot(K, np.dot(S, K.T))
def _generate_sigma_points(self, x, P):
sigma_points = np.zeros((self.state_dim, self.n_sigma))
L = np.linalg.cholesky((self.state_dim + self.lambda_) * P)
sigma_points[:, 0] = x
for i in range(self.state_dim):
sigma_points[:, i+1] = x + L[:, i]
sigma_points[:, i+1+self.state_dim] = x - L[:, i]
self.weights_mean[0] = self.lambda_ / (self.state_dim + self.lambda_)
self.weights_cov[0] = self.weights_mean[0] + (1 - self.alpha**2 + self.beta)
for i in range(1, self.n_sigma):
self.weights_mean[i] = 1 / (2 * (self.state_dim + self.lambda_))
self.weights_cov[i] = self.weights_mean[i]
return sigma_points
def _generate_measurement_sigma_points(self, sigma_points):
measurement_sigma_points = np.zeros((self.measurement_dim, self.n_sigma))
for i in range(self.n_sigma):
measurement_sigma_points[:, i] = self._measurement_model(sigma_points[:, i])
return measurement_sigma_points
def _add_control_input(self, sigma_points, u):
for i in range(self.n_sigma):
sigma_points[:, i] = self._state_transition_model(sigma_points[:, i], u)
return sigma_points
def _propagate(self, sigma_points, dt):
for i in range(self.n_sigma):
sigma_points[:, i] = self._state_transition_model(sigma_points[:, i], None, dt)
return sigma_points
def _state_transition_model(self, state, control_input=None, dt=None):
# TODO: Implement state transition model
pass
def _measurement_model(self, state):
# TODO: Implement measurement model
pass
```
在实现代码时需要替换 `_state_transition_model` 和 `_measurement_model` 函数,以适应具体问题。
阅读全文