LSTM基于均方根误差的多步预测模型MATLAB代码
时间: 2023-11-14 07:10:15 浏览: 92
以下是一个使用LSTM基于均方根误差的多步预测模型的MATLAB代码示例:
```matlab
% 加载数据
load sunspot_dataset
data = zscore(sunspotInputs);
% 定义LSTM网络参数
numFeatures = 1;
numResponses = 1;
numHiddenUnits = 200;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numResponses)
regressionLayer];
% 训练LSTM网络
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'MiniBatchSize',200, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.01, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',50, ...
'Verbose',0);
net = trainNetwork(data,data,layers,options);
% 预测结果
numTimeStepsTest = 50;
dataTest = data(end-numTimeStepsTest+1:end);
YPred = predict(net,dataTest,numTimeStepsTest,'MiniBatchSize',1);
% 绘制结果
figure
plot(data)
hold on
idx = numTimeStepsTest:(numTimeStepsTest+size(YPred,2)-1);
plot(idx,YPred,'.-')
hold off
xlabel("Year")
ylabel("Standardized Sunspot Numbers")
title("Forecast")
legend(["Observed" "Forecast"])
```
这段代码首先加载了一个太阳黑子数据集,然后定义了一个包含LSTM层的神经网络,并使用Adam优化器进行训练。接下来,使用训练好的网络对数据集的最后50个时间步进行预测,并将结果与原始数据绘制在同一张图中。
阅读全文