LSTM进行均方根误差多步预测的MATLAB代码
时间: 2023-11-16 19:13:05 浏览: 64
下面是使用LSTM进行均方根误差多步预测的MATLAB代码示例:
```matlab
% 加载数据
load data.mat
% 数据处理
numTimeStepsTrain = floor(0.9*numel(data));
XTrain = data(1:numTimeStepsTrain+1);
YTrain = data(2:numTimeStepsTrain+2);
XTest = data(numTimeStepsTrain+1:end-1);
YTest = data(numTimeStepsTrain+2:end);
% 定义模型参数
numFeatures = 1;
numResponses = 1;
numHiddenUnits = 200;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numResponses)
regressionLayer];
% 定义训练参数
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.2, ...
'LearnRateDropPeriod',20, ...
'Verbose',0, ...
'Plots','training-progress');
% 训练模型
net = trainNetwork(XTrain,YTrain,layers,options);
% 预测测试集
YPred = predict(net,XTest);
% 计算均方根误差
rmse = sqrt(mean((YPred-YTest).^2));
% 绘制结果图
figure
plot(data(1:end-1))
hold on
idx = numTimeStepsTrain+1:(numTimeStepsTrain+numel(YTest));
plot(idx,[data(numTimeStepsTrain) YPred],'-.')
hold off
xlim([0,numel(data)])
xlabel("Month")
ylabel("Cases")
title("Forecast")
legend(["Observed" "Forecast"])
```
其中,`data.mat`是输入的时间序列数据,`numTimeStepsTrain`是训练集的时间步数,`XTrain`和`YTrain`是训练集的输入和输出数据,`XTest`和`YTest`是测试集的输入和输出数据。`numHiddenUnits`是LSTM层的隐藏单元数,`layers`定义了模型的层数和结构,`options`定义了训练的参数。`trainNetwork`函数用于训练模型,`predict`函数用于预测测试集数据,`rmse`计算了均方根误差,最后使用`plot`函数绘制了预测结果图。
阅读全文