Swin transformer的LSA
时间: 2023-11-13 12:55:23 浏览: 43
LSA是指Local Swin Attention,是Swin Transformer中的一种注意力机制。它是一种局部注意力机制,可以在不增加计算复杂度的情况下提高模型的感受野。具体来说,LSA将输入特征图分成若干个局部块,然后在每个局部块内进行自注意力计算,最后将所有局部块的注意力结果拼接起来得到最终的注意力结果。
相关问题
Swin Transformer V2和Swin Transformer
Swin Transformer V2是Swin Transformer的一个改进版本。Swin Transformer V2解决了Swin Transformer中存在的一些问题,包括训练不稳定性、预训练和微调之间的分辨率差距以及对标记数据的渴望。这些问题的解决使得Swin Transformer V2在大型视觉模型训练和应用中更加稳定和高效。
Swin Transformer 内部本身就有残差结构,如何在Swin Transformer 基础上加入残差结构,还有Swin Transformer 模块的stage3中使用了6个Swin Transformer block,可以减少一些数量吗,会影响他的准确性吗
Swin Transformer 内部本身就包含了残差结构,因此不需要再额外添加残差结构。Swin Transformer 的残差结构是通过跨层连接来实现的,可以有效减少模型的参数量和计算复杂度。
关于减少 Swin Transformer 模块中的 block 数量,这取决于具体的任务和数据集。对于一些较简单的任务和数据集,可以考虑减少 block 的数量以提高模型的运行速度,但这可能会降低模型的准确性。而对于一些较复杂的任务和数据集,建议保留较多的 block 以获取更好的检测结果。
需要注意的是,在减少 block 的数量时,应该保持 Swin Transformer 模块的整体结构不变,并且仍需保留各个阶段的输入输出尺寸,以确保模型的有效性。
阅读全文