void Motor_Control() { /* switch(uStateSwicth) { case StopSwitch: // 停车 { xStatus = 0; yStatus = 0; xCarParam.Speed_X = 0; xCarParam.Speed_Y = 0; xCarParam.Speed_Z = 0; xCarParam.EncoderSumY = 0; xCarParam.EncoderSumX = 0; xCarParam.CarDistanceX = 0; xCarParam.CarDistanceY = 0; break; } case CascadeSwitch: // 小车控制速度 { SpeedX_Control(); SpeedY_Control(); break; } } */ //=================EndSwitch================================= Position_PID(&IMU,xCarParam.yaw,tarYaw); xCarParam.Speed_Z = IMU.result; xCarParam.Speed_Y = 0; xCarParam.Speed_X = 0; // 三个速度限幅函数 xCarParam.Speed_X = LimitProtect(SpeedMaxX,-SpeedMaxX,xCarParam.Speed_X); xCarParam.Speed_Y = LimitProtect(SpeedMaxY,-SpeedMaxY,xCarParam.Speed_Y); xCarParam.Speed_Z = LimitProtect(SpeedMaxZ,-SpeedMaxZ,xCarParam.Speed_Z); // 计算占空比 motor[0].duty = xCarParam.Speed_Y + xCarParam.Speed_X + xCarParam.Speed_Z; motor[1].duty = xCarParam.Speed_Y - xCarParam.Speed_X + xCarParam.Speed_Z; motor[2].duty = xCarParam.Speed_Y - xCarParam.Speed_X - xCarParam.Speed_Z; motor[3].duty = xCarParam.Speed_Y + xCarParam.Speed_X - xCarParam.Speed_Z; // 增量式PID 自己有限幅函数 Increment_PID(&(motor[0].pid),encoder_data_quaddec[0],motor[0].duty); Increment_PID(&(motor[1].pid),encoder_data_quaddec[1],motor[1].duty); Increment_PID(&(motor[2].pid),encoder_data_quaddec[2],motor[2].duty); Increment_PID(&(motor[3].pid),encoder_data_quaddec[3],motor[3].duty); // 电机调速 setMotorDuty(&motor[0],motor[0].pid.result); setMotorDuty(&motor[1],motor[1].pid.result); setMotorDuty(&motor[2],motor[2].pid.result); setMotorDuty(&motor[3],motor[3].pid.result); }

时间: 2024-04-18 14:23:36 浏览: 10
这段代码是用于控制电机的函数。 首先,代码中有一段被注释掉的switch语句,根据uStateSwicth的不同值来执行不同的操作。当uStateSwicth等于StopSwitch时,表示停车状态,会将一些参数和状态重置为0。当uStateSwicth等于CascadeSwitch时,表示小车控制速度状态,会调用SpeedX_Control和SpeedY_Control函数。 接下来,在注释掉的代码之后,通过位置PID控制来计算小车的速度控制信号。具体来说,通过Position_PID函数计算出目标偏航角与当前偏航角的差值,并将其作为输入量。然后将计算得到的速度控制信号赋值给xCarParam.Speed_Z。 然后,将xCarParam.Speed_Y和xCarParam.Speed_X设置为0。 接着,对三个速度进行限幅处理,确保其在设定的上限和下限范围内。 然后,根据计算得到的速度以及电机的布置方式,计算出每个电机的占空比。 接下来,使用增量式PID控制算法对每个电机进行调速。通过Increment_PID函数计算出每个电机的控制量。 最后,使用setMotorDuty函数将计算得到的控制量设置给每个电机。 这段代码实现了电机的控制逻辑,根据目标偏航角和速度的设定,通过PID控制算法实现电机的调速。
相关问题

#define StopSwitch 0 #define CascadeSwitch 1 CAR xCarParam = {0}; float tarYaw = 90.0f; uint8_t uStateSwicth = 0; uint8_t xStatus = 0; uint8_t yStatus = 0; uint16_t SpeedMaxX = 200; uint16_t SpeedMaxY = 200; uint16_t SpeedMaxZ = 400; uint16_t uStartSpeed = 0; uint16_t speed_up_cnt_x = 0; uint16_t speed_up_cnt_y = 0; uint8_t increase_rat_x = 4; uint8_t increase_rat_y = 4; float Kx = 1.0f; float Ky = 1.0f; void SpeedX_Control(void); void SpeedY_Control(void); void MoveReset(void) { xCarParam.Speed_X = 0; xCarParam.Speed_Y = 0; xCarParam.Speed_Z = 0; xCarParam.Status = 0; xCarParam.EncoderSumX = 0; xCarParam.EncoderSumY = 0; xCarParam.CarDistanceX = 0; xCarParam.CarDistanceY = 0; } void Move(uint8_t CoordX,uint8_t CoordY) { pit_disable(MOTOR_PIT); MoveReset(); xCarParam.CarDistanceX = (int64_t)((CoordX - xCarParam.nowCoordX)*20.0f*Kx); xCarParam.CarDistanceY = (int64_t)((CoordY - xCarParam.nowCoordY)*20.0f*Ky); uStateSwicth = CascadeSwitch; pit_enable(MOTOR_PIT); } void Stop() { pit_disable(MOTOR_PIT); MoveReset(); uStateSwicth = StopSwitch; pit_enable(MOTOR_PIT); }

这段代码是一个移动控制的函数,通过控制小车的速度和距离来实现移动。 首先定义了一些常量和变量,如停止开关和级联开关的状态,小车的参数,目标偏航角,速度上限,起始速度等。 然后定义了一些函数,如速度控制函数SpeedX_Control和SpeedY_Control,以及MoveReset函数用于重置小车参数。 Move函数用于控制小车移动到指定的坐标位置。它首先禁用了定时器中断,然后重置小车参数。接着计算出小车在X和Y方向上需要移动的距离,并将其存储在CarDistanceX和CarDistanceY中。最后将级联开关状态设置为1,重新启用定时器中断。 Stop函数用于停止小车的运动。它也首先禁用了定时器中断,然后重置小车参数。然后将级联开关状态设置为0,重新启用定时器中断。 这段代码中还有一些其他的变量和参数,具体功能需要根据上下文来确定。

void TestDelay(uint32 delay); void TestDelay(uint32 delay) { static volatile uint32 DelayTimer = 0; while (DelayTimer<delay) { DelayTimer++; } DelayTimer=0; } extern void CAN2_ORED_0_31_MB_IRQHandler(void); #if 1 // #include "Can_Ipw.h" #define MSG_ID 20u #define RX_MB_IDX 1U #define TX_MB_IDX 0U volatile int exit_code = 0; extern Flexcan_Ip_StateType Can_Ipw_xStatus0; /* User includes / uint8 dummyData[8] = {1,2,3,4,5,6,7}; /! \brief The main function for the project. \details The startup initialization sequence is the following: * - startup asm routine * - main() / //extern const Clock_Ip_ClockConfigType Clock_Ip_aClockConfig[1]; extern void CAN0_ORED_0_31_MB_IRQHandler(void); int main(void) { uint8 u8TimeOut = 100U; CanIf_bTxFlag = FALSE; CanIf_bRxFlag = FALSE; / Initialize the Mcu driver / #if (MCU_PRECOMPILE_SUPPORT == STD_ON) Mcu_Init(NULL_PTR); #elif (MCU_PRECOMPILE_SUPPORT == STD_OFF) Mcu_Init(&Mcu_Config); / Initialize the clock tree and apply PLL as system clock / Mcu_InitClock(McuClockSettingConfig_0); while ( MCU_PLL_LOCKED != Mcu_GetPllStatus() ) { / Busy wait until the System PLL is locked / } #endif / (MCU_PRECOMPILE_SUPPORT == STD_ON) / / Write your code here / Mcu_DistributePllClock(); Mcu_SetMode(McuModeSettingConf_0); / Initialize Platform driver */ Platform_Init(NULL_PTR); Port_Init(&Port_Config); Spi_Init(&Spi_Config); #if 1 // CanTrcv_TJA1145_Init(); uint8 SWK_WUF_Detection = 0u; uint8 tempRegVal = 0u; /SBC mode StandBy/ /SBC_SetMode(CANTRCV_TRCVMODE_STANDBY);/ /Disable wakepin/ Sbc_Reg_Write(CanTrcv_Tja1145_Wpe, 0x00, FALSE); /Set Lock control register/ Sbc_Reg_Write(CanTrcv_Tja1145_Lc, 0x00, FALSE); /Can baudrate config/ Sbc_Reg_Write(CanTrcv_Tja1145_Dr, CANTRCV_TJA1145_CAN_DATA_RATE, FALSE); /Set CAN control register/ Sbc_Reg_Write(CanTrcv_Tja1145_Cc, 0x31, FALSE); Sbc_Reg_Read(CanTrcv_Tja1145_Ts, &tempRegVal); Sbc_Reg_Read(CanTrcv_Tja1145_Tes, &SWK_WUF_Detection); Sbc_Reg_Write(CanTrcv_Tja1145_Mc, CanTrcv_Tja1145_Mc_MC_Normal, FALSE); Sbc_Reg_Write(CanTrcv_Tja1145_Cc,CanTrcv_Tja1145_Cc_CMC_Active,FALSE); #endif // Clock_Ip_Init(&Clock_Ip_aClockConfig[0]); volatile Flexcan_Ip_StatusType result = 1; volatile Flexcan_Ip_StatusType result1 = 1; IntCtrl_Ip_EnableIrq(FlexCAN0_1_IRQn); IntCtrl_Ip_InstallHandler(FlexCAN0_1_IRQn, CAN0_ORED_0_31_MB_IRQHandler, NULL_PTR); // Dio_WriteChannel(DioConf_DioChannel_DioChannel_O_S_STB_CAN3_M, STD_LOW);//CAN3 STB Flexcan_Ip_DataInfoType rx_info = { .msg_id_type = FLEXCAN_MSG_ID_STD, .data_length = 8u, .is_polling = TRUE, .is_remote = FALSE }; Flexcan_Ip_MsgBuffType rxData; FlexCAN_Ip_Init(CanController_0, &Can_Ipw_xStatus0, &Flexcan_aCtrlConfigPB[0U]);// while (1) { if(rx_compli==1) { FlexCAN_Ip_SetStartMode(CanController_0); FlexCAN_Ip_ConfigRxMb(CanController_0, RX_MB_IDX, &rx_info, MSG_ID); // rx_info.is_polling = FALSE; FlexCAN_Ip_Send(CanController_0, TX_MB_IDX, &rx_info, MSG_ID, (uint8 *)&dummyData); FlexCAN_Ip_Receive(CanController_0, RX_MB_IDX, &rxData, TRUE); while(FlexCAN_Ip_GetTransferStatus(CanController_0, RX_MB_IDX)

Sorry, I'm an AI language model and I don't have enough context to understand your question. Could you please provide more information or clarify your question?

相关推荐

最新推荐

recommend-type

基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip

基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip个人经导师指导并认可通过的高分毕业设计项目,评审分98分。主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统
recommend-type

本户型为2层独栋别墅D026-两层-13.14&12.84米-施工图.dwg

本户型为2层独栋别墅,建筑面积239平方米,占地面积155平米;一层建筑面积155平方米,设有客厅、餐厅、厨房、卧室3间、卫生间1间、杂物间;二层建筑面积84平方米,设有卧室2间、卫生间1间、储藏间、1个大露台。 本户型外观造型别致大方,采光通风良好,色彩明快,整体平面布局紧凑、功能分区合理,房间尺度设计适宜,豪华大气,富有时代气息。
recommend-type

Java_带有可选web的开源命令行RatioMaster.zip

Java_带有可选web的开源命令行RatioMaster
recommend-type

基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于MATLAB实现的对机械振动信号用三维能量谱进行分析+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的对机械振动信号用三维能量谱进行分析+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。