图像去雾的原始对偶算法的程序
时间: 2024-05-13 17:16:44 浏览: 124
以下是图像去雾的原始对偶算法的Python程序:
```python
import numpy as np
from scipy import misc, fftpack
from PIL import Image
def im2double(im):
return np.float64(im) / np.max(im)
def double2im(im):
return np.uint8(im*255)
def wthresh(x, T):
return np.sign(x) * np.maximum(np.abs(x) - T, 0)
def shrink(x, tau):
return np.maximum(np.abs(x) - tau, 0) * np.sign(x)
def dual_filtering(Y, lambda_, sigma, iter_=100):
# initialization
h, w = Y.shape
u1 = np.zeros((h, w))
u2 = np.zeros((h, w))
u3 = np.zeros((h, w))
p = np.zeros((h, w, 2))
div_p = np.zeros((h, w))
# Fourier transform matrix
F = fftpack.fft2(np.eye(h, w))
# dual step size
sigma1 = 1 / (sigma * lambda_ * np.sqrt(2))
sigma2 = 1 / (sigma * lambda_ * np.sqrt(2))
# main iteration
for i in range(iter_):
# update u1, u2, u3
grad_u = np.gradient(u3)
u1 = wthresh(u1 + sigma1 * grad_u[0], lambda_ * sigma1)
u2 = wthresh(u2 + sigma1 * grad_u[1], lambda_ * sigma1)
u3 = shrink(Y + div_p, sigma2)
# update p
grad_u = np.gradient(u3)
p[:, :, 0] = p[:, :, 0] + sigma * grad_u[0]
p[:, :, 1] = p[:, :, 1] + sigma * grad_u[1]
# update divergence of p
div_p = - np.gradient(p[:, :, 0], axis=0) - np.gradient(p[:, :, 1], axis=1)
return u3
def dehaze(image_path, lambda_=5, sigma=0.05, iter_=100):
# read image
im = np.array(Image.open(image_path).convert('L'))
# normalize image
I = im2double(im)
# apply the algorithm
J = dual_filtering(I, lambda_, sigma, iter_)
# denormalize the image
J = double2im(J)
return J
```
其中,`im2double`函数将图像像素值归一化到[0, 1]范围内,`double2im`函数将像素值恢复到[0, 255]范围内;`wthresh`函数是一个软阈值函数,用于实现L1范数正则化;`shrink`函数是一个硬阈值函数,用于实现L1范数正则化;`dual_filtering`函数是原始对偶算法的实现,其中`Y`是输入图像,`lambda_`是正则化参数,`sigma`是步长参数,`iter_`是迭代次数;`dehaze`函数是整个算法的接口函数,用于读取图像、调用`dual_filtering`函数、并返回去雾后的图像。
阅读全文