语义分割precision和recall实现代码
时间: 2024-06-13 07:08:38 浏览: 173
以下是语义分割precision和recall的实现代码:
```python
def calculate_precision_recall(confusion_matrix):
num_class = confusion_matrix.shape[0]
precision = np.zeros(num_class)
recall = np.zeros(num_class)
for i in range(num_class):
tp = confusion_matrix[i, i]
fp = np.sum(confusion_matrix[:, i]) - tp
fn = np.sum(confusion_matrix[i, :]) - tp
precision[i] = tp / (tp + fp)
recall[i] = tp / (tp + fn)
return precision, recall
```
其中,`confusion_matrix`是混淆矩阵,`num_class`是类别数。函数中,首先计算每个类别的TP、FP、FN,然后根据公式计算precision和recall。最后返回precision和recall。
相关问题
语义分割指标python代码
语义分割是一种计算机视觉任务,用于将图像分割成不同的语义区域。在Python中,可以使用以下代码来计算语义分割的评价指标:
1. 准确率(Accuracy):
```python
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_true, y_pred)
```
2. 精确率(Precision):
```python
from sklearn.metrics import precision_score
precision = precision_score(y_true, y_pred)
```
3. 召回率(Recall):
```python
from sklearn.metrics import recall_score
recall = recall_score(y_true, y_pred)
```
4. F1值(F1-score):
```python
from sklearn.metrics import f1_score
f1 = f1_score(y_true, y_pred)
```
5. IoU值(Intersection over Union):
```python
from sklearn.metrics import jaccard_score
iou = jaccard_score(y_true, y_pred)
```
其中,y_true是真实标签,y_pred是预测标签。
筛选语义分割数据集标签代码
筛选语义分割数据集标签的代码实现可以参考以下步骤:
1. 定义标签质量评估函数,计算标签的精度、召回率、F1-score等指标,以评估标签的质量。
2. 定义标签一致性评估函数,比较不同标注者之间的标签一致性,以评估标签的一致性。
3. 定义标签覆盖率评估函数,计算标签覆盖率,以评估标签的覆盖率。
4. 定义标签类别评估函数,比较标签中的类别和需要的类别,以评估标签的类别。
5. 根据以上评估结果,筛选标签质量较好、一致性较高、覆盖率较全、类别较准确的语义分割数据集标签。
下面是一份示例代码,其中假设已经有了数据集的图像和标签,需要对标签进行筛选:
```python
import numpy as np
# 定义标签质量评估函数
def compute_metrics(pred, label):
# 计算精度、召回率和F1-score
TP = np.sum(np.logical_and(pred == 1, label == 1))
FP = np.sum(np.logical_and(pred == 1, label == 0))
FN = np.sum(np.logical_and(pred == 0, label == 1))
TN = np.sum(np.logical_and(pred == 0, label == 0))
precision = TP / (TP + FP)
recall = TP / (TP + FN)
f1_score = 2 * precision * recall / (precision + recall)
return precision, recall, f1_score
# 定义标签一致性评估函数
def compute_consistency(label1, label2):
# 比较两个标签的一致性
consistency = np.sum(label1 == label2) / label1.size
return consistency
# 定义标签覆盖率评估函数
def compute_coverage(label):
# 计算标签覆盖率
coverage = np.sum(label == 1) / label.size
return coverage
# 定义标签类别评估函数
def compute_category(label, categories):
# 比较标签中的类别和需要的类别
category = np.isin(label, categories)
return category
# 筛选语义分割数据集标签
def filter_labels(images, labels, categories):
num = len(labels)
metrics = np.zeros((num, 3))
consistency = np.zeros((num, num))
coverage = np.zeros(num)
category = np.zeros(num, dtype=bool)
for i in range(num):
metric = compute_metrics(labels[i], categories)
metrics[i] = metric
for j in range(i+1, num):
cons = compute_consistency(labels[i], labels[j])
consistency[i,j] = cons
consistency[j,i] = cons
cov = compute_coverage(labels[i])
coverage[i] = cov
cat = compute_category(labels[i], categories)
category[i] = cat
# 筛选标签
idx = (metrics[:,2] > 0.8) & (consistency.mean(axis=0) > 0.8) & (coverage > 0.9) & category
images_filtered = images[idx]
labels_filtered = labels[idx]
return images_filtered, labels_filtered
```
以上代码中,`images`是数据集的图像,`labels`是数据集的标签,`categories`是需要的类别。`filter_labels`函数根据标签质量、一致性、覆盖率和类别等评估结果筛选标签,并返回筛选后的图像和标签。
阅读全文