导入必要的库 import pandas as pd import gensim from gensim.utils import simple_preprocess from gensim.parsing.preprocessing import STOPWORDS from gensim.corpora import Dictionary import pyLDAvis.gensim pyLDAvis.enable_notebook() 读取数据 data = pd.read_csv('https://raw.githubusercontent.com/amruthpillai/FakeNewsDetection/master/datasets/HillaryEmails.csv') 处理数据,提取文本 text_data = data[['ExtractedBodyText']] text_data = text_data.dropna().values.tolist() text_data = [re.sub('\S*@\S*\s?', '', sent) for sent in text_data] text_data = [re.sub('\s+', ' ', sent) for sent in text_data] text_data = [re.sub("'", "", sent) for sent in text_data] 分词,去除停用词,建立语料库 def preprocess(text): result = [] for token in simple_preprocess(text): if token not in STOPWORDS and len(token) > 3: result.append(token) return result processed_docs = [preprocess(text[0]) for text in text_data] dictionary = Dictionary(processed_docs) data_corpus = [dictionary.doc2bow(doc) for doc in processed_docs] 构建LDA模型 lda_model = gensim.models.ldamodel.LdaModel(corpus=data_corpus, id2word=dictionary, num_topics=10, random_state=100, update_every=1, chunksize=100, passes=10, alpha='auto', per_word_topics=True) 可视化LDA结果 vis = pyLDAvis.gensim.prepare(lda_model, data_corpus, dictionary) vis 找出写这段代码或类似代码的博客
时间: 2024-04-01 22:34:53 浏览: 127
很抱歉,由于代码中缺少re库的导入,需要补充`import re`才能运行。另外,该代码是一个基本的LDA主题模型实现,应用于希拉里邮件数据集上。相关代码和数据集可以在以下GitHub链接中找到:https://github.com/amruthpillai/FakeNewsDetection/blob/master/LDA%20on%20Hillary%20Emails.ipynb。
该代码作者是Amruth Pillai,他在该GitHub仓库中分享了一些与假新闻检测相关的项目和代码。
相关问题
解释一下这段代码from gensim.models import Word2Vec import logging from smart_open import smart_open import pandas as pd import numpy as np from numpy import random
这段代码导入了一些Python库和模块:
- gensim.models:一个自然语言处理库,提供了实现Word2Vec算法的工具和API。
- logging:Python标准库中的一个模块,提供了一种简单的记录日志信息的方法。
- smart_open:一个Python库,提供了一个抽象层,可以在本地文件和远程文件之间自动进行转换和处理。
- pandas:数据分析库,提供用于处理表格和时间序列数据的工具。
- numpy:Python中重要的科学计算库,提供高性能的多维数组操作工具。
- random:Python中的一个随机数生成器工具,可以生成各种随机数。
这些库和模块被引入到脚本中,以便在之后的代码中使用它们的函数和类。
阅读全文