请用JAVA语言完成用基本遗传算法求一条含 17个节点的最短路径问题
时间: 2024-10-16 11:06:06 浏览: 82
在Java中,我们可以使用基本遗传算法来解决旅行商问题(Traveling Salesman Problem,TSP),这是一个经典的组合优化问题,目标是最小化一个旅行者的总行程,使其访问每个城市恰好一次并返回起点。下面是一个简化的遗传算法步骤示例:
```java
import java.util.*;
class City {
int id;
double x, y; // 假设城市坐标已知
City(int id, double x, double y) {
this.id = id;
this.x = x;
this.y = y;
}
}
public class GeneticAlgorithmTSP {
private static final int POPULATION_SIZE = 100;
private static final int ELITISM_RATE = 0.1;
private static final int MUTATION_RATE = 0.01;
private static final int TOURNAMENT_SIZE = 5;
private List<City> cities;
private Population population;
public void init(City[] cityList) {
cities = new ArrayList<>(Arrays.asList(cityList));
population = new Population(POPULATION_SIZE, cities);
}
// 简单的编码方式,比如使用整数列表表示路线
private class Chromosome {
int[] route;
// 初始化随机路线
Chromosome() {
route = new int[cities.size()];
for (int i = 0; i < cities.size(); i++) {
route[i] = i;
}
shuffleRoute();
}
// 随机打乱顺序
private void shuffleRoute() {
Random random = new Random();
for (int i = 0; i < route.length - 1; i++) {
int j = random.nextInt(route.length - i - 1) + i;
swap(route, i, j);
}
}
// 交换两个位置的值
private void swap(int[] route, int i, int j) {
int temp = route[i];
route[i] = route[j];
route[j] = temp;
}
}
// 进行选择、交叉和变异操作
private void evolvePopulation() {
// ... 实现 Tournament Selection, Crossover 和 Mutation 等操作
}
// 计算适应度:路线长度
private double calculateFitness(Chromosome chromosome) {
double distance = 0.0;
for (int i = 0; i < cities.size(); i++) {
int start = (i == 0 ? cities.size() - 1 : i - 1);
distance += calculateDistance(cities.get(start), cities.get(chromosome.route[i]));
}
return 1 / distance; // 越短的路,适应度越高
}
// ... 其他辅助函数,如计算两点间的距离等
public void run(int generations) {
for (int i = 0; i < generations; i++) {
evolvePopulation();
}
// 最优解:当前适应度最高的染色体
Chromosome bestChromosome = population.getBestIndividual();
System.out.println("Optimal Route: " + Arrays.toString(bestChromosome.route));
System.out.println("Shortest Path Length: " + calculateFitness(bestChromosome));
}
// 主程序入口
public static void main(String[] args) {
// 创建城市数据...
City[] cityArray = {new City(1, 0, 0), ...};
GeneticAlgorithmTSP tsp = new GeneticAlgorithmTSP();
tsp.init(cityArray);
tsp.run(100); // 运行一定代数
}
}
```
请注意,这个示例非常基础,实际应用中需要完善算法细节,例如选择策略(轮盘赌选择法、锦标赛选择法)、交叉点的选取方法、以及更精细的变异操作等。同时,对于大规模问题,可以考虑使用其他高级遗传算法技巧,如适应度共享、局部搜索等。
阅读全文
相关推荐


















