哈夫曼译码器java_哈夫曼编码译码器及代码

时间: 2024-01-19 17:03:12 浏览: 35
哈夫曼编码是一种压缩算法,可以将一个长的消息或文件压缩成较短的二进制码。哈夫曼编码通过构建一棵二叉树来生成编码,每个字符对应树上的一个叶子节点,该字符的编码是从根节点到叶子节点的路径上的0和1序列。 哈夫曼编码译码器的实现需要以下步骤: 1. 解析压缩文件中的哈夫曼编码表,生成哈夫曼树。 2. 读取压缩文件,并将二进制码转换为字符。 3. 使用哈夫曼树解码字符并输出原始消息或文件。 以下是一个Java实现的哈夫曼编码译码器的代码示例: ```java import java.io.*; import java.util.*; public class HuffmanDecoder { private Map<String, String> huffmanTable; public void decodeFile(String compressedFile, String outputFile) throws IOException { // 读取压缩文件 byte[] compressedBytes = readCompressedFile(compressedFile); // 解析哈夫曼编码表 huffmanTable = parseHuffmanTable(compressedBytes); // 构建哈夫曼树 Node rootNode = buildHuffmanTree(huffmanTable); // 解码文件 decodeBytes(compressedBytes, rootNode, outputFile); } private byte[] readCompressedFile(String compressedFile) throws IOException { FileInputStream inputStream = new FileInputStream(compressedFile); byte[] bytes = new byte[(int) new File(compressedFile).length()]; inputStream.read(bytes); inputStream.close(); return bytes; } private Map<String, String> parseHuffmanTable(byte[] compressedBytes) { Map<String, String> huffmanTable = new HashMap<String, String>(); String tableString = new String(compressedBytes).split("\\|")[0]; String[] entries = tableString.split(";"); for (String entry : entries) { String[] parts = entry.split(":"); huffmanTable.put(parts[0], parts[1]); } return huffmanTable; } private Node buildHuffmanTree(Map<String, String> huffmanTable) { List<Node> nodeList = new ArrayList<Node>(); for (Map.Entry<String, String> entry : huffmanTable.entrySet()) { Node node = new Node(entry.getKey(), Integer.parseInt(entry.getValue())); nodeList.add(node); } while (nodeList.size() > 1) { Collections.sort(nodeList); Node leftChild = nodeList.remove(0); Node rightChild = nodeList.remove(0); Node parent = new Node(null, leftChild.frequency + rightChild.frequency); parent.leftChild = leftChild; parent.rightChild = rightChild; nodeList.add(parent); } return nodeList.get(0); } private void decodeBytes(byte[] compressedBytes, Node rootNode, String outputFile) throws IOException { StringBuilder binaryStringBuilder = new StringBuilder(); for (int i = compressedBytes.length - 1; i >= 0; i--) { byte currentByte = compressedBytes[i]; String binaryString = Integer.toBinaryString(currentByte & 255 | 256).substring(1); binaryStringBuilder.append(binaryString); } String binaryString = binaryStringBuilder.reverse().toString(); FileOutputStream outputStream = new FileOutputStream(outputFile); Node currentNode = rootNode; for (int i = 0; i < binaryString.length(); i++) { if (binaryString.charAt(i) == '0') { currentNode = currentNode.leftChild; } else { currentNode = currentNode.rightChild; } if (currentNode.isLeaf()) { outputStream.write(currentNode.value.charAt(0)); currentNode = rootNode; } } outputStream.close(); } private class Node implements Comparable<Node> { private String value; private int frequency; private Node leftChild; private Node rightChild; public Node(String value, int frequency) { this.value = value; this.frequency = frequency; } public boolean isLeaf() { return leftChild == null && rightChild == null; } public int compareTo(Node other) { return frequency - other.frequency; } } public static void main(String[] args) throws IOException { HuffmanDecoder decoder = new HuffmanDecoder(); decoder.decodeFile("compressed_file.bin", "output_file.txt"); } } ``` 此代码解析压缩文件并生成哈夫曼树,然后使用该树来解码文件。要使用此代码,请将 `compressed_file.bin` 替换为要解码的文件名,将 `output_file.txt` 替换为输出文件名。

相关推荐

最新推荐

recommend-type

哈夫曼编码-译码器课程设计报告.docx

设计一个利用哈夫曼算法的编码和译码系统,重复地显示并处理以下项目,直到选择退出为止。 基本要求: (1)将权值数据存放在数据文件(文件名为data.txt,位于执行程序的当前目录中) (2)分别采用动态和静态存储...
recommend-type

数据结构课程设计哈夫曼树编译码器报告.doc

开发环境:VC++ 6.0 (1) I:初始化...(2) E:编码(Encoding)。 (3) D:译码(Decoding)。 (4) P:打印代码文件(Print)。 (5)T:打印哈夫曼树(HuffmanTreePrint)。 (6)Q:退出程序(Quit)。
recommend-type

哈夫曼编/译码器(C++)

这个C++实现的哈夫曼编/译码器,充分体现了哈夫曼编码的核心思想,即通过构建最优的二叉树结构来实现字符的高效编码和解码。在实际应用中,哈夫曼编码常用于文本压缩、图像压缩等领域,能够显著提高数据传输和存储的...
recommend-type

数据结构实验二哈夫曼树及哈夫曼编码译码的实现

哈夫曼树及哈夫曼编码译码的实现 哈夫曼树是一种特殊的二叉树,它的每个节点的权重是其所有子节点的权重之和。哈夫曼树的应用非常广泛,如数据压缩、编码、译码等。 哈夫曼树的存储结构 哈夫曼树的存储结构可以...
recommend-type

哈夫曼编/译码器(C++语言编写的)

《哈夫曼编/译码器(C++语言编写的)》 哈夫曼编码是一种高效的前缀编码方法,常用于数据压缩。在这个C++实现的程序中,主要涉及了哈夫曼编码器和解码器的构建,以及数据结构的相关知识。以下是程序的主要组成部分...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。