encoder only 和 decoder only
时间: 2023-07-30 18:04:07 浏览: 206
"Encoder only" 和 "Decoder only" 是与序列到序列(Seq2Seq)模型相关的概念。
在Seq2Seq模型中,有两个关键部分:编码器(Encoder)和解码器(Decoder)。编码器将输入序列(例如文本或音频)转换为一个固定的向量表示,然后解码器将该向量作为输入,并生成相应的输出序列。
"Encoder only"模型仅使用编码器部分,将输入序列转换为向量表示,例如用于文本分类或情感分析任务。而"Decoder only"模型则只使用解码器部分,例如用于生成文本或音频。
需要注意的是,"Encoder only"和"Decoder only"模型通常需要在训练过程中使用预训练的词向量或语音特征等先验信息。
相关问题
构建seq2seq模型训练已脱敏数据集,Encoder/Decoder的选择LSTM,评估指标:bleu-4 (from nltk.translate.bleu_score import corpus_bleu)。数据集类似以下格式【index,description,diagnosis 0,14 108 28 30 15 13 294 29 20 18 23 21 25 32 16 14 39 27 14 47 46 69 70 11 24 42 26 37 61 24 10 79 46 62 19 13 31 95 19 28 20 18 10 22 12 38 41 17 23 21 36 53 25 10,22 12 38 41 17 81 10】,写出其python代码
好的,下面是我给您提供的代码,其中包括数据处理、模型定义、训练和评估等部分:
```python
import numpy as np
import pandas as pd
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Model
from keras.layers import Input, LSTM, Dense, Embedding
from keras.callbacks import ModelCheckpoint
from nltk.translate.bleu_score import corpus_bleu
# 数据加载
data = pd.read_csv("data.csv", encoding="utf-8")
# 将数据划分为训练集和验证集
train_size = int(len(data) * 0.8)
train_data = data[:train_size]
val_data = data[train_size:]
# 训练集和验证集的输入和输出
train_input = train_data['description'].values
train_output = train_data['diagnosis'].values
val_input = val_data['description'].values
val_output = val_data['diagnosis'].values
# 创建标记器
tokenizer = Tokenizer(oov_token='<UNK>')
tokenizer.fit_on_texts(np.concatenate([train_input, train_output]))
# 训练集和验证集的输入和输出序列
train_input_seq = tokenizer.texts_to_sequences(train_input)
train_output_seq = tokenizer.texts_to_sequences(train_output)
val_input_seq = tokenizer.texts_to_sequences(val_input)
val_output_seq = tokenizer.texts_to_sequences(val_output)
# 获取最大序列长度
max_input_len = max(len(seq) for seq in train_input_seq)
max_output_len = max(len(seq) for seq in train_output_seq)
# 填充序列
train_input_seq = pad_sequences(train_input_seq, maxlen=max_input_len, padding='post')
train_output_seq = pad_sequences(train_output_seq, maxlen=max_output_len, padding='post')
val_input_seq = pad_sequences(val_input_seq, maxlen=max_input_len, padding='post')
val_output_seq = pad_sequences(val_output_seq, maxlen=max_output_len, padding='post')
# 定义模型
latent_dim = 256
encoder_inputs = Input(shape=(max_input_len,))
encoder_embedding = Embedding(len(tokenizer.word_index) + 1, latent_dim, mask_zero=True)(encoder_inputs)
encoder_lstm = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder_lstm(encoder_embedding)
encoder_states = [state_h, state_c]
decoder_inputs = Input(shape=(max_output_len,))
decoder_embedding = Embedding(len(tokenizer.word_index) + 1, latent_dim, mask_zero=True)(decoder_inputs)
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states)
decoder_dense = Dense(len(tokenizer.word_index) + 1, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
# 编译模型
model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy')
# 定义回调函数
checkpoint = ModelCheckpoint('model.h5', save_best_only=True)
# 训练模型
batch_size = 64
epochs = 50
history = model.fit([train_input_seq, train_output_seq[:, :-1]], train_output_seq[:, 1:],
batch_size=batch_size,
epochs=epochs,
validation_data=([val_input_seq, val_output_seq[:, :-1]], val_output_seq[:, 1:]),
callbacks=[checkpoint])
# 评估模型
test_input = val_input_seq[:10]
test_output = val_output_seq[:10]
pred_output = []
for i in range(len(test_input)):
input_seq = test_input[i:i+1]
decoded_seq = np.zeros((1, max_output_len))
decoded_seq[0, 0] = tokenizer.word_index['<s>']
for j in range(1, max_output_len):
output = model.predict([input_seq, decoded_seq]).argmax(axis=-1)
decoded_seq[0, j] = output[0, j-1]
if output[0, j-1] == tokenizer.word_index['</s>']:
break
pred_output.append(decoded_seq[0])
pred_output = np.array(pred_output)
test_output = test_output[:, 1:]
pred_output = pred_output[:, :-1]
print('BLEU-4 score:', corpus_bleu(test_output, pred_output))
```
这段代码是一个完整的Seq2Seq模型训练和评估的示例,其中包括数据处理、模型定义、训练和评估等部分。您可以根据自己的具体情况对代码进行修改和调整。
unet和attention unet 保留三层 其他的不变 把完整代码复制粘贴给我
根据您的要求,以下是保留了三层的 U-Net 和 Attention U-Net 的完整代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import os
import argparse
import glob
import matplotlib.pyplot as plt
from tqdm import tqdm
import numpy as np
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2),
nn.ReLU(),
nn.ConvTranspose2d(64, 3, kernel_size=2, stride=2),
nn.Sigmoid(),
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
class AttentionBlock(nn.Module):
def __init__(self, F_g, F_l, F_int):
super(AttentionBlock, self).__init__()
self.W_g = nn.Sequential(
nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(F_int)
)
self.W_x = nn.Sequential(
nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(F_int)
)
self.psi = nn.Sequential(
nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(1),
nn.Sigmoid()
)
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = self.psi(psi)
return x * psi
class AttentionUNet(nn.Module):
def __init__(self):
super(AttentionUNet, self).__init__()
self.encoder1 = self.conv_block(3, 64)
self.encoder2 = self.conv_block(64, 128)
self.encoder3 = self.conv_block(128, 256)
self.bottleneck = self.conv_block(256, 512)
self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.att3 = AttentionBlock(F_g=256, F_l=256, F_int=128)
self.decoder3 = self.conv_block(512, 256)
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.att2 = AttentionBlock(F_g=128, F_l=128, F_int=64)
self.decoder2 = self.conv_block(256, 128)
self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.att1 = AttentionBlock(F_g=64, F_l=64, F_int=32)
self.decoder1 = self.conv_block(128, 64)
self.final_conv = nn.Conv2d(64, 3, kernel_size=1, stride=1, padding=0)
self.sigmoid = nn.Sigmoid()
def conv_block(self, in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
e1 = self.encoder1(x)
e2 = self.encoder2(F.max_pool2d(e1, 2))
e3 = self.encoder3(F.max_pool2d(e2, 2))
b = self.bottleneck(F.max_pool2d(e3, 2))
d3 = self.upconv3(b)
e3 = self.att3(g=d3, x=e3)
d3 = torch.cat((e3, d3), dim=1)
d3 = self.decoder3(d3)
d2 = self.upconv2(d3)
e2 = self.att2(g=d2, x=e2)
d2 = torch.cat((e2, d2), dim=1)
d2 = self.decoder2(d2)
d1 = self.upconv1(d2)
e1 = self.att1(g=d1, x=e1)
d1 = torch.cat((e1, d1), dim=1)
d1 = self.decoder1(d1)
out = self.final_conv(d1)
out = self.sigmoid(out)
return out
class ColorblindDataset(Dataset):
def __init__(self, image_dir, mode='train', transform=None):
self.image_dir = image_dir
self.mode = mode
self.transform = transform
self.normal_images = glob.glob(image_dir + '/' + mode + '/' + 'origin_image' + '/*')
self.recolor_images = glob.glob(image_dir + '/' + mode + '/' + 'recolor_image' + '/' + '*Protanopia*')
self.correct_images = glob.glob(image_dir + '/' + mode + '/' + 'correct_image' + '/*')
self.normal_images.sort()
self.recolor_images.sort()
self.correct_images.sort()
self.image_pair = []
for index, image in enumerate(self.normal_images):
self.image_pair.append([self.recolor_images[index], self.normal_images[index]])
def __len__(self):
return len(self.image_pair)
def __getitem__(self, idx):
recolor_path, normal_path = self.image_pair[idx]
recolor_image = Image.open(recolor_path).convert('RGB')
normal_image = Image.open(normal_path).convert('RGB')
if self.transform:
recolor_image = self.transform(recolor_image)
normal_image = self.transform(normal_image)
return recolor_image, normal_image
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.encoder1 = self.conv_block(3, 64)
self.encoder2 = self.conv_block(64, 128)
self.encoder3 = self.conv_block(128, 256)
self.bottleneck = self.conv_block(256, 512)
self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.att3 = AttentionBlock(F_g=256, F_l=256, F_int=128)
self.decoder3 = self.conv_block(512, 256)
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.att2 = AttentionBlock(F_g=128, F_l=128, F_int=64)
self.decoder2 = self.conv_block(256, 128)
self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.att1 = AttentionBlock(F_g=64, F_l=64, F_int=32)
self.decoder1 = self.conv_block(128, 64)
self.final_conv = nn.Conv2d(64, 3, kernel_size=1, stride=1, padding=0)
self.sigmoid = nn.Sigmoid()
def conv_block(self, in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
e1 = self.encoder1(x)
e2 = self.encoder2(F.max_pool2d(e1, 2))
e3 = self.encoder3(F.max_pool2d(e2, 2))
b = self.bottleneck(F.max_pool2d(e3, 2))
d3 = self.upconv3(b)
e3 = self.att3(g=d3, x=e3)
d3 = torch.cat((e3, d3), dim=1)
d3 = self.decoder3(d3)
d2 = self.upconv2(d3)
e2 = self.att2(g=d2, x=e2)
d2 = torch.cat((e2, d2), dim=1)
d2 = self.decoder2(d2)
d1 = self.upconv1(d2)
e1 = self.att1(g=d1, x=e1)
d1 = torch.cat((e1, d1), dim=1)
d1 = self.decoder1(d1)
out = self.final_conv(d1)
out = self.sigmoid(out)
return out
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 1, kernel_size=16),
)
def forward(self, x):
return self.main(x).view(-1)
def compute_iou(outputs, targets, threshold=0.5):
outputs = (outputs > threshold).float()
targets = (targets > threshold).float()
intersection = (outputs * targets).sum(dim=(1, 2, 3))
union = outputs.sum(dim=(1, 2, 3)) + targets.sum(dim=(1, 2, 3)) - intersection
iou = (intersection + 1e-6) / (union + 1e-6)
return iou.mean().item()
from skimage.metrics import peak_signal_noise_ratio as psnr_metric
from skimage.metrics import structural_similarity as ssim_metric
def compute_psnr(outputs, targets):
outputs = outputs.cpu().detach().numpy()
targets = targets.cpu().detach().numpy()
psnr = 0
for i in range(outputs.shape[0]):
psnr += psnr_metric(targets[i], outputs[i], data_range=1.0)
return psnr / outputs.shape[0]
def compute_ssim(outputs, targets):
outputs = outputs.cpu().detach().numpy()
targets = targets.cpu().detach().numpy()
ssim = 0
for i in range(outputs.shape[0]):
output_img = outputs[i].transpose(1, 2, 0)
target_img = targets[i].transpose(1, 2, 0)
H, W, _ = output_img.shape
min_dim = min(H, W)
win_size = min(7, min_dim if min_dim % 2 == 1 else min_dim - 1)
win_size = max(win_size, 3)
ssim += ssim_metric(
target_img, output_img, data_range=1.0, channel_axis=-1, win_size=win_size
)
return ssim / outputs.shape[0]
def wasserstein_loss(pred, target):
return torch.mean(pred * target)
from torch.autograd import grad
def compute_gradient_penalty(discriminator, real_samples, fake_samples, device):
alpha = torch.rand(real_samples.size(0), 1, 1, 1, device=device)
interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True)
d_interpolates = discriminator(interpolates)
fake = torch.ones(real_samples.size(0), device=device)
gradients = grad(
outputs=d_interpolates,
inputs=interpolates,
grad_outputs=fake,
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
def train_correction_model(generator, discriminator, dataloader, optimizer_G, optimizer_D, device, lambda_gp, lambda_pixel, n_critic):
generator.train()
discriminator.train()
running_g_loss = 0.0
running_d_loss = 0.0
running_iou = 0.0
running_psnr = 0.0
running_ssim = 0.0
for batch_idx, (inputs, targets) in enumerate(tqdm(dataloader, desc="Training")):
inputs = inputs.to(device)
targets = targets.to(device)
# Train Discriminator
optimizer_D.zero_grad()
corrected_images = generator(inputs)
real_validity = discriminator(targets)
fake_validity = discriminator(corrected_images.detach())
gp = compute_gradient_penalty(discriminator, targets.data, corrected_images.data, device)
d_loss = -torch.mean(real_validity) + torch.mean(fake_validity) + lambda_gp * gp
d_loss.backward()
optimizer_D.step()
# Train Generator
if batch_idx % n_critic == 0:
optimizer_G.zero_grad()
corrected_images = generator(inputs)
fake_validity = discriminator(corrected_images)
g_adv_loss = -torch.mean(fake_validity)
pixelwise_loss = nn.L1Loss()
g_pixel_loss = pixelwise_loss(corrected_images, targets)
g_loss = g_adv_loss + lambda_pixel * g_pixel_loss
g_loss.backward()
optimizer_G.step()
else:
g_loss = torch.tensor(0.0)
running_g_loss += g_loss.item()
running_d_loss += d_loss.item()
iou = compute_iou(corrected_images, targets)
psnr = compute_psnr(corrected_images, targets)
ssim = compute_ssim(corrected_images, targets)
running_iou += iou
running_psnr += psnr
running_ssim += ssim
epoch_g_loss = running_g_loss / len(dataloader)
epoch_d_loss = running_d_loss / len(dataloader)
epoch_iou = running_iou / len(dataloader)
epoch_psnr = running_psnr / len(dataloader)
epoch_ssim = running_ssim / len(dataloader)
return epoch_g_loss, epoch_d_loss,
阅读全文