数字矩阵输入的卷积神经网络程序pytorch
时间: 2024-02-22 21:28:57 浏览: 71
卷积神经网络基础 pytorch
以下是一个数字矩阵输入的卷积神经网络程序,使用Pytorch实现:
```python
import torch
import torch.nn as nn
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 7 * 7, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = x.view(-1, 64 * 7 * 7)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
```
这个网络包括两个卷积层(每个卷积层都有32和64个过滤器)和两个全连接层。输入是28x28的数字矩阵。在前向传递过程中,输入矩阵经过卷积和池化层,最终得到一个10个元素的向量,表示网络对输入的数字矩阵的预测。
阅读全文