def compare(text1, text2): similarities = [] text1 = ("text_new:\n", text_new) text2 = ("text_old:\n", text_old) for i in range(len(text1)): for j in range(len(text2)): tf_idf_vectorizer = TfidfVectorizer() tf_idf_vectors = tf_idf_vectorizer.fit_transform([text1[i], text2[j]]) cosine_similarities = cosine_similarity(tf_idf_vectors) similarities.append(cosine_similarities[0, 1]) print (similarities)这段代码可以比较出结果,但结果会随着文本的增多而变小,怎么修改?

时间: 2024-02-19 15:58:49 浏览: 31
这段代码的问题在于每个文本都会与其他所有文本进行比较,并且每一次比较都会使用新的 TfidfVectorizer 对象进行计算。这样会导致计算出的相似度值被稀释,因为每个文本都会有很多与其他文本不相关的词汇。 为了解决这个问题,可以考虑以下几点: 1. 只比较最新的文本和之前的最后一个文本,而不是每个新文本都与之前的所有文本进行比较。 2. 保持一个全局的 TfidfVectorizer 对象,而不是每一次比较都创建一个新的对象。 3. 可以考虑使用其他的相似度算法,例如余弦相似度的变种。 下面是修改后的代码示例: ``` python from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity # 定义一个全局的 TfidfVectorizer 对象 tf_idf_vectorizer = TfidfVectorizer() # 存储之前的文本 text_old = "" def compare(text_new): global text_old similarities = [] # 比较最新的文本和之前的最后一个文本 tf_idf_vectors = tf_idf_vectorizer.fit_transform([text_old, text_new]) cosine_similarities = cosine_similarity(tf_idf_vectors) similarities.append(cosine_similarities[0, 1]) # 更新之前的文本 text_old = text_new return similarities ``` 这个修改后的代码只会比较最新的文本和之前的最后一个文本,而不是每个新文本都与之前的所有文本进行比较。同时,我们使用了一个全局的 TfidfVectorizer 对象来计算相似度,保证了每次比较使用的都是同一个对象,避免了相似度被稀释的问题。

相关推荐

import torch from transformers import BertTokenizer, BertModel # 加载Bert预训练模型和tokenizer model = BertModel.from_pretrained('bert-base-chinese') tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') # 微博文本和种子词 text = '今天天气真好,心情非常愉快!' seeds = ['天气', '心情', '愉快'] # 将微博文本和种子词转换为Bert输入格式 inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt') seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True) # 使用Bert模型获取微博文本和种子词的词向量 with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size] # 计算种子词和微博文本中所有词语的余弦相似度 text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size] seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, hidden_size] -> [batch_size, 1, hidden_size] -> [batch_size, hidden_size] cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size] # 获取相似度最高的词语 similar_words = [] for i in range(len(seeds)): seed_similarities = cosine_similarities[:, i].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word) print(similar_words)

import torch from transformers import BertTokenizer, BertModel # 加载Bert预训练模型和tokenizer model = BertModel.from_pretrained('bert-base-chinese') tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') # 微博文本和种子词 text = '今天天气真好,心情非常愉快!' seeds = ['天气', '心情', '愉快'] # 将微博文本和种子词转换为Bert输入格式 inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt') seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True) # 使用Bert模型获取微博文本和种子词的词向量 with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size] # 计算种子词和微博文本中所有词语的余弦相似度 text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size] seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, hidden_size] -> [batch_size, 1, hidden_size] -> [batch_size, hidden_size] cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size] # 获取相似度最高的词语 similar_words = [] for i in range(len(seeds)): seed_similarities = cosine_similarities[:, i].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word) print(similar_words) 能不能详细讲解一下上述这段代码的每行代码的意思,为什么这样用,比如用到的函数是什么意思,生成的变量是什么类型,能列举吗?而且这段代码中后面的这行代码seed_similarities = cosine_similarities[:, i].tolist()报错了,报错显示Traceback (most recent call last): File "E:/PyCharm Community Edition 2020.2.2/Project/WordDict/cos_similarity.py", line 35, in <module> seed_similarities = cosine_similarities[:, i].tolist() IndexError: index 1 is out of bounds for dimension 1 with size 1 能不能帮我解释一下为什么错,解释一下该怎么修改,并给出修改后的代码呢?

import torchfrom transformers import BertTokenizer, BertModel# 加载Bert预训练模型和tokenizermodel = BertModel.from_pretrained('bert-base-chinese')tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')# 微博文本和种子词text = '今天天气真好,心情非常愉快!'seeds = ['天气', '心情', '愉快']# 将微博文本和种子词转换为Bert输入格式inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt')seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True)# 使用Bert模型获取微博文本和种子词的词向量with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size]# 计算种子词和微博文本中所有词语的余弦相似度text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size]seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, seq_len, hidden_size] -> [batch_size, hidden_size]cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size]# 获取相似度最高的词语similar_words = []for i in range(len(seeds)): seed_similarities = cosine_similarities[i, :].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word)print(similar_words) 上述修改后的代码输出全是['[CLS]', '[CLS]', '[CLS]'],这不是我想要的结果啊,我想要的是微博文本的词语和种子词很相似的所有词语,而不是bert自动添加的特殊标记符,该怎么办

最新推荐

recommend-type

安装NumPy教程-详细版

附件是安装NumPy教程_详细版,文件绿色安全,请大家放心下载,仅供交流学习使用,无任何商业目的!
recommend-type

语音端点检测及其在Matlab中的实现.zip

语音端点检测及其在Matlab中的实现.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)