囚徒困境的无差异曲线以及TPRs指标是什么

时间: 2023-09-15 07:16:16 浏览: 131
囚徒困境的无差异曲线是指在两个囚徒的合作/背叛决策下,双方收益的变化曲线。在囚徒困境中,如果两个囚徒都选择合作,则双方都能获得较高的收益;但如果一个囚徒选择背叛而另一个囚徒选择合作,则背叛者会获得更高的收益,而合作者则会获得较低的收益。如果两个囚徒都选择背叛,则双方都会获得较低的收益。 TPRs指标是囚徒困境中的一个评价指标,全称为Total Payoff Ratio。它是指一个囚徒在整个博弈过程中获得的总收益与他在博弈中可能获得的最高收益之比。TPRs越高,说明一个囚徒在博弈中获得的收益越高,表现出更加优秀的策略。
相关问题

python交叉验证roc曲线

交叉验证是一种模型评估方法,它可以减少模型评估的方差。在Python中,使用交叉验证与ROC曲线结合可以评估模型在不同数据子集上的表现,ROC曲线(接收者操作特征曲线)是一种评估分类器性能的工具,它通过绘制真正率(TPR)与假正率(FPR)之间的关系来表示模型的性能。 在Python中实现交叉验证ROC曲线的典型步骤如下: 1. 准备数据集:将数据集分成特征和标签两部分,并根据需要对数据进行标准化或其他预处理。 2. 划分数据集:使用交叉验证的方法将数据集划分成多个子集。常见的交叉验证方法包括K折交叉验证(K-Fold Cross Validation)和留一交叉验证(Leave-One-Out Cross Validation)。 3. 训练模型:对于每一个子集,使用一部分数据作为训练集,另一部分作为验证集,训练分类器。 4. 计算ROC曲线:在每个验证集上评估模型的预测性能,计算真正率和假正率,并绘制ROC曲线。 5. 分析结果:结合所有子集的结果,评估模型的平均性能和稳定性。 下面是一个使用Python的scikit-learn库实现上述步骤的简化示例代码: ```python from sklearn.datasets import make_classification from sklearn.model_selection import cross_val_curve from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt # 生成模拟数据集 X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42) # 创建模型 model = LogisticRegression() # 计算不同决策阈值下的ROC曲线 tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) # 10折交叉验证计算ROC曲线和AUC for train, test in KFold(n_splits=10): probas_ = model.fit(X[train], y[train]).predict_proba(X[test]) # 计算当前折叠的ROC曲线和AUC fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) tprs.append(np.interp(mean_fpr, fpr, tpr)) tprs[-1][0] = 0.0 roc_auc = auc(fpr, tpr) aucs.append(roc_auc) # 计算平均ROC曲线 mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) # 绘制平均ROC曲线 plt.plot(mean_fpr, mean_tpr, color='b', label=r'Mean ROC (AUC = %0.2f )' % mean_auc, lw=2, alpha=0.8) ```

如何绘制50个epoch的平均ROC曲线

要绘制50个epoch的平均ROC曲线,可以按照以下步骤进行: 1. 训练模型并保存每个epoch的ROC曲线数据,可以使用Python中的sklearn.metrics库来计算ROC曲线数据。 2. 将50个epoch的ROC曲线数据加载到一个列表中。 3. 对于每个ROC曲线,将其x轴坐标(FPR)归一化到0-1范围内。 4. 对于每个归一化后的ROC曲线,使用线性插值计算在0-1范围内的y轴坐标(TPR)的值。 5. 对所有50个归一化后的ROC曲线的y轴坐标进行平均,得到50个epoch的平均ROC曲线的y轴坐标。 6. 将归一化后的x轴坐标和平均y轴坐标绘制成ROC曲线。 下面是一个可能的Python代码示例: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc # 训练模型并保存每个epoch的ROC曲线数据 roc_data = [] for epoch in range(50): # 训练模型并计算ROC曲线数据 fpr, tpr, thresholds = roc_curve(y_true, y_scores) roc_auc = auc(fpr, tpr) roc_data.append((fpr, tpr, roc_auc)) # 将50个epoch的ROC曲线数据加载到一个列表中 fprs = [roc_data[i][0] for i in range(50)] tprs = [roc_data[i][1] for i in range(50)] # 对于每个ROC曲线,将其x轴坐标(FPR)归一化到0-1范围内 normalized_fprs = [np.interp(np.linspace(0, 1, 100), fprs[i], np.linspace(0, 1, len(fprs[i]))) for i in range(50)] # 对于每个归一化后的ROC曲线,使用线性插值计算在0-1范围内的y轴坐标(TPR)的值 normalized_tprs = [] for i in range(50): normalized_tprs.append(np.interp(np.linspace(0, 1, 100), normalized_fprs[i], tprs[i])) # 对所有50个归一化后的ROC曲线的y轴坐标进行平均,得到50个epoch的平均ROC曲线的y轴坐标 mean_tprs = np.mean(normalized_tprs, axis=0) # 将归一化后的x轴坐标和平均y轴坐标绘制成ROC曲线 plt.plot(np.linspace(0, 1, 100), mean_tprs, color='b', label='Mean ROC') plt.plot([0, 1], [0, 1], linestyle='--', color='r', label='Random guessing') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curve') plt.legend() plt.show() ```

相关推荐

import seaborn as sns corrmat = df.corr() top_corr_features = corrmat.index plt.figure(figsize=(16,16)) #plot heat map g=sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdYlGn") plt.show() sns.set_style('whitegrid') sns.countplot(x='target',data=df,palette='RdBu_r') plt.show() dataset = pd.get_dummies(df, columns = ['sex', 'cp', 'fbs','restecg', 'exang', 'slope', 'ca', 'thal']) from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler standardScaler = StandardScaler() columns_to_scale = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak'] dataset[columns_to_scale] = standardScaler.fit_transform(dataset[columns_to_scale]) dataset.head() y = dataset['target'] X = dataset.drop(['target'], axis=1) from sklearn.model_selection import cross_val_score knn_scores = [] for k in range(1, 21): knn_classifier = KNeighborsClassifier(n_neighbors=k) score = cross_val_score(knn_classifier, X, y, cv=10) knn_scores.append(score.mean()) plt.plot([k for k in range(1, 21)], knn_scores, color='red') for i in range(1, 21): plt.text(i, knn_scores[i - 1], (i, knn_scores[i - 1])) plt.xticks([i for i in range(1, 21)]) plt.xlabel('Number of Neighbors (K)') plt.ylabel('Scores') plt.title('K Neighbors Classifier scores for different K values') plt.show() knn_classifier = KNeighborsClassifier(n_neighbors = 12) score=cross_val_score(knn_classifier,X,y,cv=10) score.mean() from sklearn.ensemble import RandomForestClassifier randomforest_classifier= RandomForestClassifier(n_estimators=10) score=cross_val_score(randomforest_classifier,X,y,cv=10) score.mean()的roc曲线的代码

修改和补充下列代码得到十折交叉验证的平均每一折auc值和平均每一折aoc曲线,平均每一折分类报告以及平均每一折混淆矩阵 min_max_scaler = MinMaxScaler() X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] # apply the same scaler to both sets of data X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) config = get_config() tree = gcForest(config) tree.fit(X_train1, y_train1) y_pred11 = tree.predict(X_test1) y_pred1.append(y_pred11 X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) config = get_config() tree = gcForest(config) tree.fit(X_train_fuzzy1, y_train_fuzzy1) y_predd = tree.predict(X_test_fuzzy1) y_pred.append(y_predd) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1)y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) print(y_pred.shape) print(y_pred1.shape) print(y_test.shape) print(y_test_fuzzy.shape) # 深度森林 report1 = classification_report(y_test, y_prprint("DF",report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F",report) mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse)

最新推荐

recommend-type

5116-微信小程序电影院订票选座系统设计及实现+ssm(源码+数据库+lun文).zip

本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。
recommend-type

JavaScript 中的 `Array.prototype.filter` 方法全解析

在 JavaScript 编程中,处理数组是一项基本而重要的任务。数组的过滤操作是其中的一个常见需求,Array.prototype.filter 方法为此提供了强大的支持。本文将深入探讨 Array.prototype.filter 方法的工作原理、使用场景、代码示例以及与其他数组方法的比较。 Array.prototype.filter 是 JavaScript 中处理数组的强大工具,它允许开发者以声明式的方式轻松筛选出符合特定条件的元素。通过结合使用 Array.prototype.filter 和其他数组方法,可以解决各种复杂的数据筛选问题。 通过本文的详细介绍和示例代码,你应该能够掌握 Array.prototype.filter 的工作原理,并能够在实际开发中灵活运用它来处理数组数据。此外,了解其与 Array.prototype.map 和 Array.prototype.reduce 的结合使用,可以帮助你更好地编写高效且易于维护的代码。
recommend-type

5108-微信小程序的书橱+ssm(源码+数据库+lun文).zip

本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。
recommend-type

5046-微信小程序校园二手交易平台的小程序+ssm(源码+数据库+lun文).zip

本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。
recommend-type

SMT小型视觉贴片机控制系统源码源代码图纸 DI

SMT小型视觉贴片机控制系统源码源代码图纸 DI
recommend-type

C++多态实现机制详解:虚函数与早期绑定

C++多态性实现机制是面向对象编程的重要特性,它允许在运行时根据对象的实际类型动态地调用相应的方法。本文主要关注于虚函数的使用,这是实现多态的关键技术之一。虚函数在基类中声明并被标记为virtual,当派生类重写该函数时,基类的指针或引用可以正确地调用派生类的版本。 在例1-1中,尽管定义了fish类,但基类animal中的breathe()方法并未被声明为虚函数。因此,当我们创建一个fish对象fh,并将其地址赋值给animal类型的指针pAn时,编译器在编译阶段就已经确定了函数的调用地址,这就是早期绑定。这意味着pAn指向的是animal类型的对象,所以调用的是animal类的breathe()函数,而不是fish类的版本,输出结果自然为"animalbreathe"。 要实现多态性,需要在基类中将至少一个成员函数声明为虚函数。这样,即使通过基类指针调用,也能根据实际对象的类型动态调用相应的重载版本。在C++中,使用关键字virtual来声明虚函数,如`virtual void breathe();`。如果在派生类中重写了这个函数,例如在fish类中定义`virtual void breathe() { cout << "fishbubble" << endl; }`,那么即使使用animal类型的指针,也能调用到fish类的breathe()方法。 内存模型的角度来看,当一个派生类对象被赋值给基类指针时,基类指针只存储了派生类对象的基类部分的地址。因此,即使进行类型转换,也只是访问基类的公共成员,而不会访问派生类特有的私有或保护成员。这就解释了为什么即使指针指向的是fish对象,调用的还是animal的breathe()函数。 总结来说,C++多态性是通过虚函数和早期/晚期绑定来实现的。理解这两个概念对于编写可扩展和灵活的代码至关重要。在设计程序时,合理使用多态能够提高代码的复用性和可维护性,使得程序结构更加模块化。通过虚函数,可以在不改变接口的情况下,让基类指针动态调用不同类型的子类对象上的同名方法,从而展现C++强大的继承和封装特性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

matlab处理nc文件,nc文件是1979-2020年的全球降雨数据,获取一个省份区域内的日降雨量,代码怎么写

在MATLAB中处理`.nc`(NetCDF)文件通常需要使用`netcdf`函数库,它是一个用于读写多种科学数据格式的工具。对于全球降雨数据,你可以按照以下步骤编写代码: 1. 安装必要的库(如果还没有安装): ```matlab % 如果你尚未安装 netcdf 包,可以安装如下: if ~exist('netcdf', 'dir') disp('Installing the NetCDF toolbox...') addpath(genpath(fullfile(matlabroot,'toolbox','nco'))); end ``` 2. 加载nc文件并查看其结
recommend-type

Java多线程与异常处理详解

"Java多线程与进程调度是编程领域中的重要概念,尤其是在Java语言中。多线程允许程序同时执行多个任务,提高系统的效率和响应速度。Java通过Thread类和相关的同步原语支持多线程编程,而进程则是程序的一次执行实例,拥有独立的数据区域。线程作为进程内的执行单元,共享同一地址空间,减少了通信成本。多线程在单CPU系统中通过时间片轮转实现逻辑上的并发执行,而在多CPU系统中则能实现真正的并行。 在Java中,异常处理是保证程序健壮性的重要机制。异常是程序运行时发生的错误,通过捕获和处理异常,可以确保程序在遇到问题时能够优雅地恢复或终止,而不是崩溃。Java的异常处理机制使用try-catch-finally语句块来捕获和处理异常,提供了更高级的异常类型以及finally块确保关键代码的执行。 Jdb是Java的调试工具,特别适合调试多线程程序。它允许开发者设置断点,查看变量状态,单步执行代码,从而帮助定位和解决问题。在多线程环境中,理解线程的生命周期和状态(如新建、运行、阻塞、等待、结束)以及如何控制线程的执行顺序和同步是至关重要的。 Java的多线程支持包括Thread类和Runnable接口。通过继承Thread类或者实现Runnable接口,用户可以创建自己的线程。线程间同步是多线程编程中的一大挑战,Java提供了synchronized关键字、wait()、notify()和notifyAll()等方法来解决这个问题,防止数据竞争和死锁的发生。 在实际应用中,多线程常用于网络编程、数据库访问、GUI应用程序(如Swing或JavaFX)的事件处理、服务器端的并发处理等场景。例如,一个Web服务器可能需要同时处理多个客户端请求,这时使用多线程可以显著提升性能。此外,多线程在动画制作、游戏开发、多媒体应用等领域也发挥着重要作用,因为它允许同时处理渲染、计算和用户交互等多个任务。 Java的多线程与进程调度是构建高效、健壮应用的基础,而异常处理则提升了程序的稳定性。通过深入理解和熟练运用这些概念,开发者可以创建出更加灵活和可靠的软件系统。"