BiLSTM编码器代码
时间: 2024-04-14 10:23:30 浏览: 171
char-rnn-master_ner_biLSTM+CRF_BiLSTM-CRF_
5星 · 资源好评率100%
BiLSTM编码器是一种常用的神经网络模型,用于处理序列数据。它通过双向LSTM(Long Short-Term Memory)层来对输入序列进行编码。以下是一个简单的BiLSTM编码器的代码示例:
```python
import torch
import torch.nn as nn
class BiLSTMEncoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(BiLSTMEncoder, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
def forward(self, x):
# 初始化隐藏状态和细胞状态
h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(x.device)
# 前向传播
out, _ = self.lstm(x, (h0, c0))
return out
# 创建BiLSTM编码器实例
input_size = 100 # 输入特征维度
hidden_size = 128 # LSTM隐藏层大小
num_layers = 2 # LSTM层数
encoder = BiLSTMEncoder(input_size, hidden_size, num_layers)
# 输入数据
batch_size = 32
seq_length = 10
input_data = torch.randn(batch_size, seq_length, input_size)
# 前向传播
output = encoder(input_data)
```
上述代码中,`BiLSTMEncoder`类继承自`nn.Module`,并在`__init__`方法中定义了双向LSTM层。在`forward`方法中,通过调用LSTM层对输入序列进行编码,并返回编码后的输出。在示例中,我们创建了一个`BiLSTMEncoder`实例,并对输入数据进行前向传播,得到编码后的输出。
阅读全文