利用torch构建RoBerta-BiLSTM-Attention模型的代码
时间: 2024-01-03 18:03:49 浏览: 172
基于torch实现cnn+lstm+attention 模型时间序列预测 代码模板 通用
5星 · 资源好评率100%
很抱歉,作为AI语言模型,我无法提供完整的代码。但我可以提供一般的代码框架,供您参考:
```
import torch
import torch.nn as nn
from transformers import RobertaModel
class RoBERTaBiLSTMAttention(nn.Module):
def __init__(self, num_classes, hidden_size, num_layers, bidirectional=True):
super(RoBERTaBiLSTMAttention, self).__init__()
self.num_classes = num_classes
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bidirectional = bidirectional
self.roberta = RobertaModel.from_pretrained('roberta-base')
self.lstm = nn.LSTM(input_size=self.roberta.config.hidden_size, hidden_size=self.hidden_size, num_layers=self.num_layers, bidirectional=self.bidirectional, batch_first=True)
self.attention = nn.Linear(self.hidden_size * 2 if self.bidirectional else self.hidden_size, 1)
self.dropout = nn.Dropout(p=0.1)
self.fc = nn.Linear(self.hidden_size * 2 if self.bidirectional else self.hidden_size, self.num_classes)
def forward(self, input_ids, attention_mask):
# RoBERTa
last_hidden_states = self.roberta(input_ids, attention_mask=attention_mask)[0]
# BiLSTM
lstm_out, _ = self.lstm(last_hidden_states)
# Attention
attention_weights = torch.softmax(self.attention(lstm_out), dim=1)
context_vector = attention_weights * lstm_out
context_vector = context_vector.sum(dim=1)
# Classification
out = self.dropout(context_vector)
out = self.fc(out)
return out
```
该代码使用了RoBERTa作为预训练模型,BiLSTM作为文本编码器,Attention机制用于提取关键信息,最后经过全连接层进行分类。具体细节可以根据任务需求进行调整。
阅读全文