DANN pytorch
时间: 2023-11-03 17:02:42 浏览: 108
DANN是一个域自适应神经网络,用于域适应任务。它包括两个主要组件:特征提取器和域分类器。特征提取器从输入数据中提取特征,并将其传递给域分类器进行分类。在训练过程中,DANN通过最小化源域和目标域之间的差异来学习共享特征,从而提高模型在目标域上的性能。在PyTorch中,可以使用torch.nn.Module来实现DANN模型。
相关问题
dann代码pytorch
以下是使用PyTorch实现的ChitGPT模型代码,其中包括了模型的定义和训练过程。
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
class ChitGPT(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers):
super(ChitGPT, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, vocab_size)
def forward(self, x, hidden):
embedded = self.embedding(x)
output, hidden = self.lstm(embedded, hidden)
output = self.fc(output)
return output, hidden
def init_hidden(self, batch_size):
weight = next(self.parameters()).data
return (weight.new(self.num_layers, batch_size, self.hidden_dim).zero_(),
weight.new(self.num_layers, batch_size, self.hidden_dim).zero_())
class ChitGPTDataset(Dataset):
def __init__(self, text, seq_length, device):
self.seq_length = seq_length
self.device = device
self.vocab = sorted(list(set(text)))
self.char_to_idx = {c: i for i, c in enumerate(self.vocab)}
self.idx_to_char = {i: c for i, c in enumerate(self.vocab)}
self.text = [self.char_to_idx[c] for c in text]
def __len__(self):
return len(self.text) - self.seq_length
def __getitem__(self, idx):
x = torch.tensor(self.text[idx:idx+self.seq_length], dtype=torch.long).to(self.device)
y = torch.tensor(self.text[idx+1:idx+self.seq_length+1], dtype=torch.long).to(self.device)
return x, y
def train(model, optimizer, criterion, train_loader, num_epochs):
model.train()
for epoch in range(num_epochs):
running_loss = 0.0
hidden = model.init_hidden(train_loader.batch_size)
for i, (x, y) in enumerate(train_loader):
optimizer.zero_grad()
output, hidden = model(x, hidden)
loss = criterion(output.view(-1, output.size(2)), y.view(-1))
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished epoch %d' % (epoch + 1))
```
使用上述代码可以定义一个ChitGPT模型,并且训练该模型。需要注意的是,这里的ChitGPT模型是基于LSTM实现的。在训练过程中,需要提供一个ChitGPTDataset数据集对象,并将其作为参数传递给DataLoader用于生成批次数据。
DANN torch
对于给出的引用内容,它们都是与PyTorch库中的函数和操作相关的。是关于计算向量中的对数和指数的函数,是关于连接张量的函数,是关于初始化张量的函数。
关于"DANN torch"的问题,根据提供的引用内容,无法确定"DANN torch"具体指的是什么。如果有关于"DANN torch"的上下文或其他信息可以提供的话,我可以更好地回答您的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [pytorch BiLSTM+CRF代码详解](https://blog.csdn.net/weixin_30694389/article/details/113381441)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文