DANN 自定义数据集 python
时间: 2023-07-07 15:40:39 浏览: 181
您想问如何使用 Python 创建自定义数据集并在 DANN (Domain-Adversarial Neural Networks) 中使用吗?
首先,您需要准备您的数据集。数据集应包含两个文件夹:源域和目标域。每个文件夹应包含数据集的图像或其他类型的数据,并且应具有相同数量的样本。然后,您需要为数据集创建标签文件,将源域和目标域的每个样本分配一个标签。
接下来,您可以使用 Python 中的任何图像处理库(如 PIL 或 OpenCV)来加载和预处理您的数据集。然后,您可以使用 PyTorch 或 TensorFlow 等框架中的 DataLoader 将数据批量加载到模型中。在这个过程中,您需要实现 DANN 中的域分类器和特征提取器,并使用适当的损失函数进行域适应训练。
以下是使用 PyTorch 实现 DANN 的示例代码:
``` python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision.transforms import transforms
# 定义域分类器和特征提取器
class DomainClassifier(nn.Module):
def __init__(self):
super(DomainClassifier, self).__init__()
self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, 1)
def forward(self, x):
x = nn.functional.relu(self.fc1(x))
return nn.functional.sigmoid(self.fc2(x))
class FeatureExtractor(nn.Module):
def __init__(self):
super(FeatureExtractor, self).__init__()
self.resnet = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1))
)
def forward(self, x):
return self.resnet(x).view(-1, 512)
# 加载和预处理数据集
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
source_dataset = ImageFolder('source', transform=transform)
target_dataset = ImageFolder('target', transform=transform)
source_loader = DataLoader(source_dataset, batch_size=32, shuffle=True)
target_loader = DataLoader(target_dataset, batch_size=32, shuffle=True)
# 定义模型和优化器
feature_extractor = FeatureExtractor()
domain_classifier = DomainClassifier()
optimizer = optim.SGD([
{'params': feature_extractor.parameters()},
{'params': domain_classifier.parameters()}
], lr=0.01, momentum=0.9)
# 定义域适应训练的损失函数
def dann_loss(source_logits, target_logits, domain_labels):
source_loss = nn.functional.cross_entropy(source_logits, domain_labels[:source_logits.size(0)])
target_loss = nn.functional.cross_entropy(target_logits, domain_labels[source_logits.size(0):])
domain_loss = nn.functional.binary_cross_entropy(domain_classifier(torch.cat([feature_extractor(source_batch), feature_extractor(target_batch)])), domain_labels)
return source_loss + target_loss + domain_loss
# 训练模型
for epoch in range(10):
for source_batch, target_batch in zip(source_loader, target_loader):
optimizer.zero_grad()
source_logits = feature_extractor(source_batch)
target_logits = feature_extractor(target_batch)
domain_labels = torch.cat([torch.zeros(source_batch.size(0)), torch.ones(target_batch.size(0))])
loss = dann_loss(source_logits, target_logits, domain_labels)
loss.backward()
optimizer.step()
```
希望这可以回答您的问题!
阅读全文