DANN迁移训练实战:MNIST与MNIST-M数据集应用
版权申诉
5星 · 超过95%的资源 5 浏览量
更新于2024-09-11
1
收藏 526KB PDF 举报
在【深度域适配】系列文章的第二部分中,作者深入探讨了如何利用Deep Adversarial Domain Adaptation (DANN) 方法实现在MNIST和MNIST-M数据集之间的迁移学习。MNIST是经典的计算机视觉手写数字识别数据集,而MNIST-M则是MNIST的增强版本,通过将MNIST数字与BSDS500(Berkeley Segmentation Dataset and Benchmark)中的随机背景融合,增加了数据的多样性。
首先,为了进行迁移训练,作者强调了获取这两个数据集的重要性。MNIST数据集可以从官方网站下载,链接为[MNSIT],包括train、test和validation数据,以及一个简单的读取接口。在代码示例中,作者展示了如何使用TensorFlow的`input_data.read_data_sets`函数加载MNIST,并对图像进行预处理,以便于网络输入。
MNIST-M的生成需要额外步骤,因为需要BSDS500数据集。BSDS500提供了图像分割和注释,可以用于创建具有真实世界背景的合成图像。下载链接为[BSDS500]。官方提供了一个网址链接,用户可以通过点击下载所需的BSDS500数据。
在DANN的实现中,关键在于其网络架构,特别是包含梯度反转层(GRL)的部分。GRL用于在反向传播过程中对来自源域的数据应用一个负的权重,使得网络学习到的知识在适应目标域的同时,不会过度依赖源域的特性。DANN论文中的实验设计是通过对比源域和目标域的特征分布,通过对抗性训练来减少两个域之间的差距。
复现该实验时,读者需要理解DANN模型的构建,包括生成器(用于转换特征)、判别器(区分源域和目标域)以及如何集成GRL。此外,调整模型超参数,如学习率、迭代次数等,以及评估迁移性能,比如通过在目标数据集上测试模型的准确性,都是整个过程中的关键环节。
总结来说,这篇文章详细介绍了如何使用DANN进行MNIST和MNIST-M数据集的迁移学习,包括数据准备、模型架构的实现以及关键组件如GRL的应用。通过这个案例,读者能够深入了解如何在实际任务中应用DANN来解决跨域问题,提高模型在未知领域的泛化能力。
2018-04-23 上传
2024-10-28 上传
2024-10-28 上传
2021-04-07 上传
2021-06-02 上传
2021-06-07 上传
2023-06-02 上传
weixin_38626242
- 粉丝: 6
- 资源: 950
最新资源
- 探索AVL树算法:以Faculdade Senac Porto Alegre实践为例
- 小学语文教学新工具:创新黑板设计解析
- Minecraft服务器管理新插件ServerForms发布
- MATLAB基因网络模型代码实现及开源分享
- 全方位技术项目源码合集:***报名系统
- Phalcon框架实战案例分析
- MATLAB与Python结合实现短期电力负荷预测的DAT300项目解析
- 市场营销教学专用查询装置设计方案
- 随身WiFi高通210 MS8909设备的Root引导文件破解攻略
- 实现服务器端级联:modella与leveldb适配器的应用
- Oracle Linux安装必备依赖包清单与步骤
- Shyer项目:寻找喜欢的聊天伙伴
- MEAN堆栈入门项目: postings-app
- 在线WPS办公功能全接触及应用示例
- 新型带储订盒订书机设计文档
- VB多媒体教学演示系统源代码及技术项目资源大全