SQP算法 java代码
时间: 2023-10-22 16:14:50 浏览: 91
sqp算法简介
5星 · 资源好评率100%
以下是一个简单的 Java 实现 SQP 算法的代码,供参考:
```java
public class SQPAlgorithm {
private double epsilon = 0.001; // 精度要求
private int maxIterations = 100; // 最大迭代次数
public void setEpsilon(double epsilon) {
this.epsilon = epsilon;
}
public void setMaxIterations(int maxIterations) {
this.maxIterations = maxIterations;
}
public double[] optimize(Function<double[], Double> objectiveFunction, double[] initialGuess) {
int n = initialGuess.length;
double[] x = Arrays.copyOf(initialGuess, n); // 当前估计值
double[] gradient = new double[n]; // 梯度
double[][] hessian = new double[n][n]; // 黑塞矩阵
double lambda = 0.1; // 初始步长
int iteration = 0;
while (iteration < maxIterations) {
iteration++;
double f = objectiveFunction.apply(x);
gradient = computeGradient(objectiveFunction, x);
hessian = computeHessian(objectiveFunction, x);
double[] p = solveQP(hessian, gradient);
double[] xNew = newtonLineSearch(objectiveFunction, x, p, lambda);
double fNew = objectiveFunction.apply(xNew);
double rho = (f - fNew) / (0.5 * p.dot(hessian.dot(p)) + gradient.dot(p)); // 计算鲁棒系数
if (rho > 0) {
x = xNew;
lambda = Math.max(lambda / 3.0, 1e-7); // 缩小步长
} else {
lambda = Math.min(lambda * 3.0, 1e7); // 增加步长
}
if (p.norm() < epsilon) {
break; // 满足精度要求
}
}
return x;
}
private double[] computeGradient(Function<double[], Double> f, double[] x) {
int n = x.length;
double[] gradient = new double[n];
double f0 = f.apply(x);
for (int i = 0; i < n; i++) {
double[] x1 = Arrays.copyOf(x, n);
x1[i] += epsilon;
gradient[i] = (f.apply(x1) - f0) / epsilon;
}
return gradient;
}
private double[][] computeHessian(Function<double[], Double> f, double[] x) {
int n = x.length;
double[][] hessian = new double[n][n];
double f0 = f.apply(x);
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
double[] x1 = Arrays.copyOf(x, n);
double[] x2 = Arrays.copyOf(x, n);
x1[i] += epsilon;
x1[j] += epsilon;
x2[i] += epsilon;
x2[j] -= epsilon;
double f1 = f.apply(x1);
double f2 = f.apply(x2);
hessian[i][j] = hessian[j][i] = (f1 - f2 - (f.apply(x1) - f0)) / (4 * epsilon * epsilon);
}
}
return hessian;
}
private double[] solveQP(double[][] hessian, double[] gradient) {
int n = gradient.length;
Matrix P = new Matrix(hessian);
Matrix q = new Matrix(gradient, n);
double[][] G = new double[2 * n][n];
double[] h = new double[2 * n];
for (int i = 0; i < n; i++) {
G[i][i] = -1;
h[i] = 0;
}
for (int i = n; i < 2 * n; i++) {
G[i][i - n] = 1;
h[i] = 1;
}
Matrix GMatrix = new Matrix(G);
Matrix hMatrix = new Matrix(h, 2 * n);
Solver solver = new Solver(P, q, GMatrix, hMatrix);
return solver.solve();
}
private double[] newtonLineSearch(Function<double[], Double> f, double[] x, double[] p, double lambda) {
int n = x.length;
double f0 = f.apply(x);
double[] gradient = computeGradient(f, x);
double[] xNew = Arrays.copyOf(x, n);
double alpha = 1.0;
while (true) {
for (int i = 0; i < n; i++) {
xNew[i] = x[i] + alpha * p[i];
}
double fNew = f.apply(xNew);
if (fNew < f0 + 0.5 * alpha * gradient.dot(p)) {
break; // Armijo 准则
}
alpha *= 0.5; // 缩小步长
}
return xNew;
}
}
```
其中,`Function<double[], Double>` 表示目标函数,`Solver` 是一个二次规划求解器,`Matrix` 是矩阵类,可以使用 `commons-math3` 库来实现。在 `optimize` 方法中,我们首先初始化一些参数,然后在循环中反复执行以下步骤:
- 计算当前估计值的目标函数值、梯度和黑塞矩阵;
- 解二次规划问题,得到搜索方向;
- 在搜索方向上执行牛顿线搜索,得到新的估计值;
- 根据鲁棒系数更新步长。
当搜索方向的范数小于精度要求时,算法停止迭代并返回当前估计值。
上述实现中的牛顿线搜索采用了 Armijo 准则,而没有采用 Wolfe 准则,这是因为 Armijo 准则更加简单并且通常也能够收敛。如果你对 Wolfe 准则更感兴趣,可以参考其他资料进行实现。
阅读全文