帮我分析以下代码import numpy as np import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('/data/bigfiles/de091ac1-1335-47b3-82ca-077ec40a6a55.csv') x = data['V1'] y = data['V2'] X = np.array(list(zip(x,y))) # print(X) m = 2 EPS = 1e-7 def distance(X, centroid): return np.sqrt(np.sum((X-centroid)**2, axis=1)) sampleNumber = X.shape[0] # 样本数 classes = 3 U = np.random.rand(sampleNumber, classes) sumU = 1 / np.sum(U,axis=1) U = np.multiply(U.T,sumU) #np.multiply()数组对应位置相乘 U = U.T print(U) U_old = np.zeros((sampleNumber, classes)) while np.max(np.abs(U-U_old))>EPS: centroids = [] for i in range(classes): centroid = np.dot(U[:, i]**m, X) / (np.sum(U[:, i]**m)) centroids.append(centroid) U_old = U.copy() U = np.zeros((sampleNumber, classes)) for i in range(classes): for k in range(classes): U[:, i] += (distance(X, centroids[i]) / distance(X, centroids[k])) ** (2 / (m - 1)) U = 1 / U print(U) Uc = np.argmax(U,axis=1) centroids = np.array(centroids) c_x = centroids[:,0] c_y = centroids[:,1] plt.rcParams['figure.figsize'] = (16,9) for i in range(len(Uc)): plt.scatter(x[i],y[i],c=('green' if Uc[i]==0 else 'blue' if Uc[i]==1 else 'magenta'),alpha=0.5) plt.scatter(c_x,c_y,marker='*',c='black') plt.savefig("/data/workspace/myshixun/task/img/T1.png") a=Image.open("/data/workspace/myshixun/task/img/T1.png")
时间: 2023-06-05 20:08:04 浏览: 174
这段代码先导入了numpy、pandas和matplotlib.pyplot三个库,然后使用pandas库中的read_csv函数读取了一个csv文件,将数据存储到了一个名为data的DataFrame对象中。接下来通过data['V1']和data['V2']分别获取了data对象中对应的两列数据,并将它们分别存储到名为x和y的Series对象中。最后,使用numpy库中的array函数将x和y合并为一个矩阵X,其中x和y各自构成X的一列。
相关问题
import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns import chardet
### 正确导入Python数据分析和可视化库的方法
为了进行高效的数据分析与可视化,在Python环境中正确安装并导入必要的库至关重要。以下是关于`numpy`, `pandas`, `matplotlib`, `seaborn` 和 `chardet` 的具体导入方法:
#### 导入库
在开始任何项目之前,确保已经安装了所需的软件包。如果尚未安装这些库,可以使用pip命令来完成安装。
```bash
pip install numpy pandas matplotlib seaborn chardet
```
一旦确认所需库已成功安装,则可以在脚本顶部按照如下方式依次引入各个模块:
```python
import numpy as np # 提供多维数组对象以及派生对象(如掩码数组、矩阵),并且支持大量的函数操作。
import pandas as pd # 数据处理和分析的核心工具之一;提供了DataFrame结构用于存储表格型数据集。
import matplotlib.pyplot as plt # Python中最流行的绘图库之一,能够创建静态、动态交互式的图表。
import seaborn as sns # 基于Matplotlib之上构建而成的统计图形库,简化了许多常见的统计数据可视化的实现过程。
import chardet # 自动检测字符编码类型的实用程序,对于读取未知编码格式文件非常有用。
```
设置字体以便正常显示中文标签和其他特殊符号也是重要的一步。可以通过修改`matplotlib`的相关参数来进行配置:
```python
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置默认字体为黑体以支持中文显示
plt.rcParams['axes.unicode_minus'] = False # 解决负号无法正确显示的问题
```
上述代码片段展示了如何准备环境,使得后续的数据处理工作更加顺畅[^1]。
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sb from scipy.io import loadmat raw_data = loadmat('ex6data1.mat') raw_data
这段代码使用了多个Python库,包括`numpy`、`pandas`、`matplotlib`、`seaborn`和`scipy`。其中,`loadmat()`函数是`scipy.io`库中的函数,它可以将MATLAB格式的文件加载到Python中。这段代码中,它加载了名为`ex6data1.mat`的文件,并将其存储在`raw_data`变量中。
在加载数据之后,可以使用`type()`函数来检查数据类型,以确保数据已正确加载。例如,在Python控制台中,您可以键入以下内容:
```python
print(type(raw_data))
```
输出应该为`<class 'dict'>`,这意味着数据已经成功加载并存储在字典对象中。要访问字典中存储的数据,您可以使用相应的键。例如,要访问键为`'X'`的数据,请键入以下内容:
```python
X = raw_data['X']
```
这将把`X`变量设置为存储在`raw_data`字典中键为`'X'`的值。同样,要访问键为`'y'`的数据,请输入以下内容:
```python
y = raw_data['y']
```
这将把`y`变量设置为存储在`raw_data`字典中键为`'y'`的值。
阅读全文
相关推荐

















