img_resize = img_pil.resize( (w_resize, h_resize), resample=BICUBIC)
时间: 2024-03-30 07:33:20 浏览: 84
这行代码是使用 PIL 库对图像进行缩放操作。具体来说,img_pil 是一个 PIL 图像对象,img_resize 是一个缩放后的 PIL 图像对象。resize() 函数是 PIL 库中用于图像缩放的函数,其参数是一个元组 (w_resize, h_resize),表示缩放后的图像大小,另外还可以指定 resample 参数来指定缩放时的插值算法,默认值为 BICUBIC。
需要注意的是,缩放操作可能会导致图像的失真或模糊,因此在进行缩放操作时需要根据具体的应用场景和需求来选择合适的缩放大小和插值算法。常用的插值算法包括最近邻插值、双线性插值、双三次插值等,其中双三次插值(BICUBIC)是最常用的插值算法之一,可以在保持图像平滑的同时,减少失真和锯齿等现象。
相关问题
def Predict(self, img): """ get class mask of image """ h_ori, w_ori = img.shape[:2] input_size = self.net.input_info["image"].input_data.shape h_resize, w_resize = input_size[-2:] img_pil = Image.fromarray(img) img_resize = img_pil.resize( (w_resize, h_resize), resample=BICUBIC) img_np = np.asarray(img_resize) / 255 # normalize # model input [1, 1, h, w] img_np = np.expand_dims(np.expand_dims(img_np, axis=0), axis=0) input = {'image': img_np} res = self.net.infer(inputs=input) output = res["mask"].squeeze(0) probs = softmax(output) mask = Image.fromarray(np.argmax(probs, axis=0).astype(np.uint8)) mask = mask.resize((w_ori, h_ori), resample=NEAREST) mask_np = np.asarray(mask) return mask_np
这段代码实现了一个神经网络模型对输入的图片进行分割(Semantic Segmentation),返回每个像素点所属的类别。具体来说,该方法的输入是一张图片(img),包含了该图片的高度(h_ori)和宽度(w_ori)。该方法首先将图片进行缩放以符合模型的输入要求(h_resize和w_resize),然后将像素值归一化到 [0, 1] 的范围内。接下来,将归一化后的图片转换为模型的输入格式([1, 1, h, w]),并进行推理,得到模型的输出(output)。然后,将输出进行 softmax 操作,并将每个像素点归类为概率最大的类别。最后,将归类后的结果进行缩放以符合原始图片的大小(h_ori和w_ori),并将其转换为 numpy 数组的形式,作为该方法的返回值(mask_np)。
代码import os import numpy as np import nibabel as nib from PIL import Image # 创建保存路径 save_path = 'C:/Users/Administrator/Desktop/2D-LiTS2017' if not os.path.exists(save_path): os.makedirs(save_path) if not os.path.exists(os.path.join(save_path, 'image')): os.makedirs(os.path.join(save_path, 'image')) if not os.path.exists(os.path.join(save_path, 'label')): os.makedirs(os.path.join(save_path, 'label')) # 加载数据集 data_path = 'D:/BaiduNetdiskDownload/LiTS2017' img_path = os.path.join(data_path, 'Training Batch 1') label_path = os.path.join(data_path, 'Training Batch 2') # 转换图像 for file in sorted(os.listdir(img_path)): if file.endswith('.nii'): img_file = os.path.join(img_path, file) img = nib.load(img_file).get_fdata() img = np.transpose(img, (2, 0, 1)) # 转换为z, x, y for i in range(img.shape[0]): img_slice = img[i, :, :] img_slice = (img_slice - np.min(img_slice)) / (np.max(img_slice) - np.min(img_slice)) * 255 # 归一化到0-255 img_slice = img_slice.astype(np.uint8) img_slice = np.stack([img_slice]*3, axis=2) # 转换为三通道图像 img_name = file[:-4] + '' + str(i).zfill(3) + '.png' img_file_save = os.path.join(save_path, 'image', img_name) Image.fromarray(img_slice).save(img_file_save) # 转换标签 for file in sorted(os.listdir(label_path)): if file.endswith('.nii'): label_file = os.path.join(label_path, file) label = nib.load(label_file).get_fdata() label = np.transpose(label, (2, 0, 1)) # 转换为z, x, y for i in range(label.shape[0]): label_slice = label[i, :, :] label_slice[label_slice == 1] = 255 # 肝脏灰度值设为255 label_slice[label_slice == 2] = 128 # 肝脏肿瘤灰度值设为128 label_slice = label_slice.astype(np.uint8) label_name = file[:-4] + '' + str(i).zfill(3) + '.png' label_file_save = os.path.join(save_path, 'label', label_name) Image.fromarray(label_slice).save(label_file_save)出现scaled = scaled.astype(np.promote_types(scaled.dtype, dtype), copy=False) MemoryError错误,怎么修改?给出完整代码
这个错误通常意味着你的计算机没有足够的内存来处理数组。可能需要减少转换图像的尺寸或者使用更高效的算法。以下是一个可能的修改建议:
```python
import os
import numpy as np
import nibabel as nib
from PIL import Image
# 创建保存路径
save_path = 'C:/Users/Administrator/Desktop/2D-LiTS2017'
if not os.path.exists(save_path):
os.makedirs(save_path)
if not os.path.exists(os.path.join(save_path, 'image')):
os.makedirs(os.path.join(save_path, 'image'))
if not os.path.exists(os.path.join(save_path, 'label')):
os.makedirs(os.path.join(save_path, 'label'))
# 加载数据集
data_path = 'D:/BaiduNetdiskDownload/LiTS2017'
img_path = os.path.join(data_path, 'Training Batch 1')
label_path = os.path.join(data_path, 'Training Batch 2')
# 转换图像
for file in sorted(os.listdir(img_path)):
if file.endswith('.nii'):
img_file = os.path.join(img_path, file)
img = nib.load(img_file).get_fdata()
img = np.transpose(img, (2, 0, 1)) # 转换为z, x, y
for i in range(img.shape[0]):
img_slice = img[i, :, :]
img_slice = (img_slice - np.min(img_slice)) / (np.max(img_slice) - np.min(img_slice)) * 255 # 归一化到0-255
img_slice = img_slice.astype(np.uint8)
img_slice = np.stack([img_slice]*3, axis=2) # 转换为三通道图像
#减少图像大小
img_slice = np.array(Image.fromarray(img_slice).resize((512, 512), resample=Image.BICUBIC))
img_name = file[:-4] + '' + str(i).zfill(3) + '.png'
img_file_save = os.path.join(save_path, 'image', img_name)
Image.fromarray(img_slice).save(img_file_save)
# 转换标签
for file in sorted(os.listdir(label_path)):
if file.endswith('.nii'):
label_file = os.path.join(label_path, file)
label = nib.load(label_file).get_fdata()
label = np.transpose(label, (2, 0, 1)) # 转换为z, x, y
for i in range(label.shape[0]):
label_slice = label[i, :, :]
label_slice[label_slice == 1] = 255 # 肝脏灰度值设为255
label_slice[label_slice == 2] = 128 # 肝脏肿瘤灰度值设为128
label_slice = label_slice.astype(np.uint8)
label_name = file[:-4] + '' + str(i).zfill(3) + '.png'
label_file_save = os.path.join(save_path, 'label', label_name)
Image.fromarray(label_slice).save(label_file_save)
```
这里我们使用了 `PIL.Image` 中的 `resize()` 函数来减少图像大小。`resample=Image.BICUBIC` 用于指定插值方法,这里使用了 Bicubic 插值。这个方法可以保留图像的细节,并且可以减少内存使用。你也可以尝试使用其他插值方法。
阅读全文