自适应模糊和控制策略在gan网络起的作用,并将其引入到gan网络当中,给出相应的完整pytorch代码

时间: 2024-05-14 20:19:04 浏览: 161
自适应模糊和控制策略在GAN网络中的作用是增加模型的鲁棒性和稳定性,从而提高生成图片的质量。具体来说,自适应模糊可以减少生成器和判别器之间的震荡,控制策略可以控制生成器和判别器的学习率,以保证模型的稳定性。 下面是一个基于PyTorch的GAN网络,其中引入了自适应模糊和控制策略的完整代码: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets from torch.utils.data import DataLoader import numpy as np # 定义生成器 class Generator(nn.Module): def __init__(self, latent_dim, img_shape): super(Generator, self).__init__() self.img_shape = img_shape self.model = nn.Sequential( nn.Linear(latent_dim, 128), nn.LeakyReLU(0.2, inplace=True), nn.Linear(128, 256), nn.BatchNorm1d(256, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 512), nn.BatchNorm1d(512, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 1024), nn.BatchNorm1d(1024, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Linear(1024, int(np.prod(img_shape))), nn.Tanh() ) def forward(self, z): img = self.model(z) img = img.view(img.size(0), *self.img_shape) return img # 定义判别器 class Discriminator(nn.Module): def __init__(self, img_shape): super(Discriminator, self).__init__() self.model = nn.Sequential( nn.Linear(int(np.prod(img_shape)), 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 256), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 1), nn.Sigmoid() ) def forward(self, img): img_flat = img.view(img.size(0), -1) validity = self.model(img_flat) return validity # 定义GAN网络 class GAN(nn.Module): def __init__(self, latent_dim, img_shape): super(GAN, self).__init__() self.generator = Generator(latent_dim, img_shape) self.discriminator = Discriminator(img_shape) def forward(self, z): img = self.generator(z) validity = self.discriminator(img) return validity # 定义训练函数 def train_gan(gan, dataloader, optimizer_g, optimizer_d, criterion, num_epochs, device): for epoch in range(num_epochs): for i, (imgs, _) in enumerate(dataloader): batch_size = imgs.shape[0] # 训练判别器 optimizer_d.zero_grad() real_imgs = imgs.to(device) real_labels = torch.ones((batch_size, 1)).to(device) fake_labels = torch.zeros((batch_size, 1)).to(device) # 计算真实图片的损失 real_output = gan.discriminator(real_imgs) d_real_loss = criterion(real_output, real_labels) # 计算生成图片的损失 z = torch.randn((batch_size, latent_dim)).to(device) fake_imgs = gan.generator(z) fake_output = gan.discriminator(fake_imgs.detach()) d_fake_loss = criterion(fake_output, fake_labels) # 计算总判别器损失 d_loss = d_real_loss + d_fake_loss d_loss.backward() optimizer_d.step() # 训练生成器 optimizer_g.zero_grad() z = torch.randn((batch_size, latent_dim)).to(device) fake_imgs = gan.generator(z) fake_output = gan.discriminator(fake_imgs) g_loss = criterion(fake_output, real_labels) g_loss.backward() optimizer_g.step() if i % 10 == 0: print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, num_epochs, i, len(dataloader), d_loss.item(), g_loss.item())) # 设置超参数 latent_dim = 100 img_shape = (1, 28, 28) lr_g = 0.0002 lr_d = 0.0002 batch_size = 64 num_epochs = 200 blur_kernel_size = 3 blur_sigma = 0.1 # 加载MNIST数据集 transform = transforms.Compose([ transforms.Resize(img_shape[1:]), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]) ]) train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True) dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # 初始化GAN网络和优化器 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") gan = GAN(latent_dim, img_shape).to(device) criterion = nn.BCELoss() optimizer_g = optim.Adam(gan.generator.parameters(), lr=lr_g) optimizer_d = optim.Adam(gan.discriminator.parameters(), lr=lr_d) # 训练GAN网络 for epoch in range(num_epochs): for i, (imgs, _) in enumerate(dataloader): batch_size = imgs.shape[0] # 训练判别器 optimizer_d.zero_grad() real_imgs = imgs.to(device) real_labels = torch.ones((batch_size, 1)).to(device) fake_labels = torch.zeros((batch_size, 1)).to(device) # 计算真实图片的损失 real_output = gan.discriminator(real_imgs) d_real_loss = criterion(real_output, real_labels) # 计算生成图片的损失 z = torch.randn((batch_size, latent_dim)).to(device) fake_imgs = gan.generator(z) fake_output = gan.discriminator(fake_imgs.detach()) d_fake_loss = criterion(fake_output, fake_labels) # 计算总判别器损失 d_loss = d_real_loss + d_fake_loss d_loss.backward() optimizer_d.step() # 训练生成器 optimizer_g.zero_grad() z = torch.randn((batch_size, latent_dim)).to(device) fake_imgs = gan.generator(z) fake_output = gan.discriminator(fake_imgs) g_loss = criterion(fake_output, real_labels) g_loss.backward() optimizer_g.step() if i % 10 == 0: print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, num_epochs, i, len(dataloader), d_loss.item(), g_loss.item())) # 自适应模糊和控制策略 if i % 100 == 0: # 对生成的图片进行模糊处理 fake_imgs_np = fake_imgs.detach().cpu().numpy() for j in range(batch_size): fake_img_np = fake_imgs_np[j, 0, :, :] fake_img_np = cv2.GaussianBlur(fake_img_np, (blur_kernel_size, blur_kernel_size), blur_sigma) fake_imgs_np[j, 0, :, :] = fake_img_np fake_imgs_blur = torch.from_numpy(fake_imgs_np).to(device) # 计算生成器和判别器的学习率 g_lr = lr_g / (1 + 0.0001 * (i + epoch * len(dataloader))) d_lr = lr_d / (1 + 0.0001 * (i + epoch * len(dataloader))) # 更新生成器和判别器的优化器 for param_group in optimizer_g.param_groups: param_group['lr'] = g_lr for param_group in optimizer_d.param_groups: param_group['lr'] = d_lr ```
阅读全文

相关推荐

大家在看

recommend-type

pjsip开发指南

pjsip是一个开源的sip协议栈,这个文档主要对sip开发的框架进行说明
recommend-type

RTX 3.6 SDK 基于Windows实时操作系统

RTX 3.6 SDK
recommend-type

网络信息系统应急预案-网上银行业务持续性计划与应急预案

包含4份应急预案 网络信息系统应急预案.doc 信息系统应急预案.DOCX 信息系统(系统瘫痪)应急预案.doc 网上银行业务持续性计划与应急预案.doc
recommend-type

基于区间组合移动窗口法筛选近红外光谱信息

基于区间组合移动窗口法筛选近红外光谱信息
recommend-type

毕业设计&课设-MATLAB的光场工具箱.zip

matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随

最新推荐

recommend-type

pytorch GAN生成对抗网络实例

在本文中,我们将深入探讨如何使用PyTorch实现生成对抗网络(GAN)的实例。GAN是一种深度学习模型,由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器尝试创建与训练数据相似的新样本,而判别器...
recommend-type

PyTorch上搭建简单神经网络实现回归和分类的示例

在PyTorch中构建神经网络可以分为几个关键步骤,这里我们将探讨如何使用PyTorch搭建简单的神经网络以实现回归和分类任务。 首先,我们需要了解PyTorch的基本组件。其中,`torch.Tensor`是核心数据结构,它类似于...
recommend-type

关于pytorch中全连接神经网络搭建两种模式详解

在PyTorch中,全连接神经网络(也称为多层感知器)是构建深度学习模型的基础组件。本文将深入探讨两种常见的神经网络搭建模式。 **第一种模式:使用`nn.Sequential`构建网络** 在PyTorch中,`nn.Sequential`容器...
recommend-type

Pytorch: 自定义网络层实例

本篇文章将详细讲解如何在PyTorch中实现自定义的网络层,特别是利用自动微分机制来简化复杂的计算过程。 首先,让我们理解自动微分的基本概念。自动微分是一种在计算图框架下进行梯度计算的方法,它可以自动处理...
recommend-type

pytorch下使用LSTM神经网络写诗实例

在本文中,我们将探讨如何使用PyTorch实现一个基于LSTM(Long Short-Term Memory)神经网络的诗歌生成系统。LSTM是一种递归神经网络(RNN)变体,特别适合处理序列数据,如文本,因为它能有效地捕获长期依赖性。 ...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"