12.数据集df=pd.DataFrame([[1,2,3],[2,3,4]],columns=['a',‘b)‘c'],index=['A',‘B']),想要提取元素4,()无法返回想要的结 果。 A.df['c][-1:-2] B.df.loc['Bc'] C.df.iloc[1:,2:] D.df['c'][-1:-2:-1]
时间: 2023-10-08 20:06:32 浏览: 51
正确答案是 D. `df['c'][-1:-2:-1]`。
`df['c']` 可以提取数据集中列名为 `'c'` 的这一列,但是 `[-1:-2]` 的切片是空的,无法返回想要的结果。正确的方式应该是 `df['c'][-1]`,或者是 `df.loc['B', 'c']` 或者是 `df.iloc[1, 2]`。其中:
- `df['c'][-1]` 表示提取列名为 `'c'` 的这一列的最后一个元素;
- `df.loc['B', 'c']` 表示提取行名为 `'B'`,列名为 `'c'` 的这个元素;
- `df.iloc[1, 2]` 表示提取第 2 行,第 3 列的元素。
因此,正确答案是 D. `df['c'][-1:-2:-1]`。
相关问题
df = pd.DataFrame(df0, columns=df1.columns) x=df.iloc[:,:-1]
这两行代码的作用是将一个名为 df0 的 Pandas DataFrame 对象转换为一个名为 df 的新 DataFrame 对象,并且将 df 的列名设置为另一个名为 df1 的 DataFrame 对象的列名。
第一行代码中,我们使用 pd.DataFrame() 函数将 df0 转换为一个新的 DataFrame 对象,并且将列名设置为 df1 的列名。其中,df0 是原始的 DataFrame 对象,df1 是包含列名的 DataFrame 对象。
第二行代码中,我们使用 iloc[] 方法选择 df 中的所有行和除最后一列之外的所有列,并将其赋值给 x 变量。这个操作是为了将数据分成特征(所有列除最后一列)和标签(最后一列)两部分,以便进行机器学习模型的训练。
解释这段代码importpandasaspdimportnumpyasnpimportstatsmodels.apiassmimportstatsmodels.formula.apiassmfdata_raod=r'C:\Users\chen\Desktop\原油峰强比选峰.xlsx'df=pd.read_excel(data_raod,sheet_name=1,header=0,index_col=0)#将第一列与第一行作为索引与列名dfRdata_df=pd.DataFrame()columnsdata_df=pd.DataFrame()forjinrange(0,19):columns_names=[]foriinrange(0,19):columns_names.append('{}/{}'.format(df.columns[j],df.columns[i]))#构建计算后的列名,储存在columns_names列表中columns_df=pd.DataFrame(columns_names).Tcolumnsdata_df=pd.concat([columnsdata_df,columns_df],axis=0)#print(columns_names)pd_data=df.apply(lambdax:x.iloc[j]/x,axis=1)#pd_data.drop(axis=1,columns=df.columns[:j+1],inplace=True)#pd_data.columns=columns_names#将计算后的数据赋予新的表名final_df=pd_data.groupby(by=pd_data.index).mean()#做平均取值#简单线性回归模型的求解,求解R方R_squared_list=[]foriinrange(len(final_df.columns)):x=final_df.indexy=final_df.iloc[:,i]regression_data=pd.DataFrame({'Y':y,'X':x})regression=smf.ols(formula='Y~X',data=regression_data)#这里面要输入公式和数据model=regression.fit()#模型拟合R_squared_list.append(model.rsquared)#提取R方,储存到列表中R_df=pd.DataFrame(R_squared_list).T#R_df.columns=final_df.columns#列名与R方R_df#输出R方系数值print('成功输出第'+str(j)+'列两两比值后的R方!')Rdata_df=pd.concat([Rdata_df,R_df],axis=0)Rdata_df.to_excel(r'C:\Users\chen\Desktop\R
这段代码中引入了Pandas、NumPy和statsmodels两个模块,用来读取并处理Excel文件中的数据。其中,pd.read_excel()函数用于从指定的Excel文件中读取数据,sheet_name参数表示读取的是第一个表格,header参数表示表格的第一行是标题,index_col参数表示表格的第一列是行索引。
阅读全文